

Acknowledgements
Thank you to Thane Champie and James Starr for their help with proofreading.

Thank you to everyone who allowed screenshots to be printed in this book.

Thank you to the incredible WordPress community for making WordPress #1.

And most of all, thanks to you, the reader, for sharing this adventure with us.

Chris would like to thank
My mom for all the excellent printing advice (and for being a good mom).

Jeff Penman for insisting the book was a good idea.

Tim Chatman for giving me the time and assistance I needed to get it finished.

Jeff would like to thank
My wife, Jennifer, for her loving support and encouragement.

My two children, Josh and Lorelei, for being so awesome.

D I G G I N G I N T O

C H R I S C O Y I E R & J E F F S T A R R

See that? That’s dog food. It’s a metaphor.

We, the authors of Digging Into WordPress, eat our own dog food. We aren’t just here to
stand on a pedestal and preach about how you should do things. We practice these things
in the sites we work on every day.

Much of what you will read in this book is put into practice on the WordPress blog that
accompanies this book.

http://digwp.com

3.0.1
That is the current version of WordPress at

the time this book was published. So if we say
something like “...the current version of WordPress,”

we are talking about 3.0.1. If we need to mention an
older version, we’ll be specific about that.

So what if you are reading this and 3.2 is already out?
Don’t worry about it! The information in here will
still be valid. WordPress does a good job about not

breaking existing stuff for new versions.

But there will be changes, and we intend to
keep this book updated with those new

things. All current owners of this book
will get free PDF updates as it

is updated!

Short URLs
The URLs in this book are so called “short URLs.”

They look like this: http://digwp.com/u/1 – When you
click on one (PDF people) or enter one into a browser
(Book people), you will be instantly redirected to the
URL we are trying to get you to. What’s up with that?
Are we trying to drive traffic to our own site? Nope,

we are trying to do two things:

1) Make it easier for you (you don’t need to
type in long awkward URLs)

2) Make it easy for us (it is easier to
typeset and design around short

URLs than long ones)

http://digwp.com
http://digwp.com/u/1

http://digwp.com

1 Welcome to WordPress

1.1.1 Welcome . 9
1.1.2 Why WordPress is Amazing . 9

1.1.3. How to Set up and Configure WordPress . 10

1.1.4 How to Implement Advanced Functionality . 10

1.1.5 How to Optimize and Secure WordPress . 11

1.1.6 How to Maintain Your WordPress Site . 12

1.1.7 Don’t Worry . 12

1.2.1 So, You’ve Never Heard of WordPress 12
1.2.2 One Template, Many Pages . 14

1.2.3 Powerful, Flexible and Extensible . 14

1.3.1 Key Components of a WordPress Site 15
1.3.2 WordPress Core Files . 15

1.3.3 The WordPress Database . 15

1.3.4 The Back End . 17

1.3.5 The Front End . 17

Contents

http://digwp.com

1.4.1 Tools of the Trade . 17
1.4.2 A Domain Name . 17

1.4.3 Web Host / Server . 18

1.4.4 Text / Code Editor . 19

1.4.5 FTP Program . 19

2 Setting Up WordPress
2.1.1 The Famous Five Minute Install . 23

2.1.2 Where To Install? . 23

2.1.3 Checking Default Performance and Proper Functionality . 24

2.2.1 OK, I’m In. Now What? . 25
2.2.2 Just Publish Something! . 25

2.2.3 Go Look At It! . 25

2.2.4 The Plan . 26

2.3.1 Permalinks: Your URL Structure . 26
2.3.2 HTAccess . 27

2.3.3 Which Style of Permalinks? . 28

2.3.4 Pick One and Stick With It . 29

2.3.5 SEO Consideration: Mind Your Post “Slugs” . 29

2.4.1 Categories and Tags . 30

2.4.2 They Are Basically the Same . 32

2.4.3 Use Only One Category Per Post . 32

2.4.4 Use Multiple Tags Per Post . 33

2.4.5 Don’t Go Overboard! . 33

2.4.6 You Don’t Need to Use Them At All . 33

2.4.7 Custom Taxonomies . 34

2.5.1 Users and Administrators . 37
2.5.2 Add a New Account for Yourself . 37

2.6.1 Choosing the Perfect Theme . 39
2.6.2 Where to Find Awesome Themes. 40

2.6.3 Previewing Themes . 41

2.6.4 Key Things to Look For in a Theme . 41

2.7.1 Getting Started with Plugins . 44
2.7.2 Installing and Activating Plugins . 44

2.7.3 Difference Between Disabling and Uninstalling . 45

2.7.4 Recommended Plugins . 46

3 Anatomy of a WordPress Theme
3.1.1 Understanding Theme Files . 51

3.1.2 Every Theme is Different . 51

3.1.3 Commonly Used Theme Files . 53

4

3.1.4 How Theme Files Work Together. 54

3.2.1 Understanding Different Page Views 54
3.2.2 Page Views are for Pages . 55

3.2.3 Single Views are for Posts . 55

3.2.4 The Many Faces of Archive Views . 56

3.2.5 How WordPress Decides which File to use for Rendering the View 56

3.3.1 Kicking It Off with the Header . 58
3.3.2 The DOCTYPE and HTML Attributes . 58

3.3.3 META Elements . 59

3.3.4 The Title . 59

3.3.5 Link Elements . 61

3.3.6 The wp_head() Function . 64

3.3.7 Template Tags . 64

3.4.1 The WordPress Loop . 68
3.4.2 The Loop in Plain English . 68

3.4.3 The Loop Just Knows... 69

3.4.4 Some Common “Loop Only” Functions . 70

3.4.5 Some Common “Outside Loop” Functions . 71

3.5.1 Comments . 71
3.5.2 The comments.php File . 71

3.5.3 Selective Inclusion for Different Views . 72

3.6.1 The Sidebar . 74
3.6.2 Purpose and Placement . 74

3.6.3 Popular Sidebar Functions . 75

3.6.4 Widgets, Widgets, Widgets . 78

3.7.1 The Search Form . 79
3.7.2 Why is This a Separate File? . 79

3.7.3 Alternatives to WordPress Search . 79

3.8.1 The Footer . 81
3.8.2 The wp_footer() Hook . 81

3.8.3 Mini Footers / Mega Footers . 83

3.9.1 Theme Functions . 83
3.9.2 Functions are for Specific Themes . 83

3.9.3 Advantage Over Core Hacks . 84

4 Theme Design and Development
4.1.1 Customizing the Loop . 87

4.1.2 The Loop Doesn’t Care About Markup . 88

4.1.3 The Power of query_posts . 90

4.1.4 Displaying Different Numbers of Posts . 91

4.1.5 Excluding Specific Categories . 91

4.1.6 Changing the Sort Order . 92

4.1.7 Show Specific Pages, Embed a Page within a Page . 92

4.1.8 Using Multiple Loops . 92

4.2.1 Sidebars and Footers . 96

4.3.1 Menus, Archive Lists & Tag Clouds . 99
4.3.2 Page-Specific Menu Styles . 101

4.3.3 Create the Perfect Archives Page . 103

4.3.4 Impress Your Visitors with a Tag Cloud . 105

4.4.1 Side Content and Useful Menu Items 105
4.4.2 Displaying Recent Comments . 106

4.4.3 Displaying Recent Posts . 107

4.4.4. Listing Popular Posts . 108

4.4.5 Listing Recently Modified Posts . 109

4.4.6 Listing Random Posts . 110

4.4.7 Import and Display Twitter . 110

4.4.8 Import and Display Delicious . 113

4.4.9 Import and Display Other Content . 114

4.5.1 Creating and Using Child Themes . 117

4.6.1 Styling Your Theme . 118
4.6.2 Different Inclusion Methods . 119

4.6.3 To Reset or Not To Reset? . 120

4.7.1 Using Multiple Themes . 123

4.8.1 Widgetizing . 126

5 Extending Functionality

5.1.1 Extensibility . 131
5.1.2 Extending WordPress with Plugins . 131

5.1.3 A Plugin for (Almost) Everything . 131

5.1.4 Do You Need a Plugin? . 135

5.1.5 Choosing the Perfect Plugin . 136

5.2.1 Plugin Usage and Maintenance . 138
5.2.2 Sequential Installation . 138

5.2.3 Keep Plugins Up-To-Date . 138

5.2.4 Subscribe to Plugin Comment Threads . 139

5.2.5 Getting Help with Plugins . 140

5.2.6 Diagnosing Plugin Conflicts . 140

5.2.7 Disabling and Uninstalling Plugins . 141

5.3.1 Extending with Custom Functions . 144
5.3.2 Plugins vs. Theme Functions (via functions.php). 145

5.3.3 Useful Examples of Theme Functions . 146

5.3.4 Example #1: Easy Admin Buttons for Comments . 146

5.3.5 Example #2: Sitewide Shortcode Functionality . 147

5.3.6 Example #3: Transferring Plugins to functions.php . 149

5.3.7 Example #4: Transferring Functions to a Plugin . 150

5.4.1 Other Ways to Extend Functionality 151
5.4.2 Functions Within Theme Files . 151

5.4.3 Hacking the WordPress Core . 153

5.5.1 WordPress as a CMS . 154
5.5.2 CMS Features Built Into WordPress . 154

5.5.3 Working With Custom Fields . 155

5.5.4 Users, Roles and Permissions . 160

5.5.5 Categorizing, Tagging, and Custom Taxonomies . 161

5.5.6 Page Templates . 162

5.5.7 Page, Category, and Tag Hierarchies . 163

5.5.8 Dynamic Menus . 165

5.6.1 Extending CMS Functionality . 166
5.6.2 CMS-Related Plugins . 166

5.6.3 Using WordPress as a Forum . 171

5.6.4 Integration with Third-Party Forum Applications . 172

5.6.5 Multiple Blogs with WordPress MU . 173

6 Working with RSS Feeds
6.1.1 Working with RSS Feeds . 177

6.1.2 Quick Introduction to Feeds . 177

6.1.3 Dynamic Publishing and Content Distribution . 177

6.1.4 The Pros and Cons of Delivering RSS Feeds . 178

6.2.1 Different Types of WordPress Feeds 178
6.2.2 Posts Feed . 180

6.2.3 Comments Feed . 180

6.2.4 Individual Post Comments Feed . 181

6.2.5 Category and Tag Feeds . 181

6.2.6 Other Feed Types . 182

6.3.1 Feed Configurations and Formats . 183
6.3.2 Full Feeds . 185

6.3.3 Partial Feeds . 186

6.3.4 Number of Posts . 186

6.3.5 WordPress Feed Formats . 187

6.4.1 Using FeedBurner For Feed Delivery 190
6.4.2 Benefits of Using FeedBurner . 190

6.4.3 Setting Up and Configuring a FeedBurner Account . 191

6.4.4 Redirecting to FeedBurner via Plugin . 192

6.4.5 Redirecting to FeedBurner via HTAccess . 193

6.4.6 Redirecting to FeedBurner via PHP . 195

6.5.1 Tracking and Displaying Feed Statistics 196
6.5.2 Types of Statistics Provided by FeedBurner . 197

6.5.3 Displaying FeedBurner Statistics . 197

6.5.4 Alternatives to FeedBurner . 199

6.6.1 Customizing Feeds . 201
6.6.2 Formatting Feed Images . 201

6.6.3 Adding a Custom Feed Image . 204

6.6.4 Include Comments in Feeds . 205

6.6.5 Creating Custom Feeds. 207

6.6.6 More Feed Customization Tricks . 212

6.6.7 Styling Feeds . 212

6.6.8 Removing the WordPress Version Number . 213

6.6.9 Disable and Redirect Unwanted Feed Formats . 214

6.6.10 Insert Custom Content into Feeds . 215

6.6.11 Importing and Displaying External Feeds . 217

6.6.12 Buffer Period After Posting . 219

6.6.13 Protecting Feed Content . 220

6.7.1 Validating Feeds . 222
6.7.2 Diagnosing and Troubleshooting Errors . 223

7 Working with Comments
7.1.1 Optimizing the WordPress Comments Area 227

7.1.2 Welcome to the WordPress Comments Area . 227

7.1.3 About the WordPress Comment System . 228

7.1.4 Comments, Pingbacks and Trackbacks . 228

7.1.5 Anatomy of the WordPress Comment Area . 229

7.2.1 Syndicating WordPress Comments . 233
7.2.2 WordPress Main Comments Feed . 233

7.2.3 Post-Specific Comment Feeds . 234

7.3.1 Formatting the Comments Area . 235
7.3.2 Using wp_list_comments() or a Custom Loop? . 237

7.3.3 Implementing Paged Comments . 243

7.3.4 Implementing Threaded Comments . 245

7. 3.5 Separating Comments, Pingbacks and Trackbacks . 248

7.3.6 Eliminating Pingbacks and Trackbacks . 252

7.3.7 Control Comments, Pingbacks and Trackbacks

Directly with the Database . 254

7.4.1 Customizing Comment Display . 256
7.4.2 Numbering Comments Globally and Locally . 256

7.4.3 Alternating Comment Styles . 260

7.4.4 Custom Styles for Authors and Members . 261

7.4.5 Styling Comments with Gravatars . 263

7.4.6 Add a “Your comment is awaiting moderation” Message 266

7.4.7 Moderation Links in the Theme Itself . 267

7.4.8 Display Comment, Ping/Trackback Counts . 268

7.5.1 Optimizing the Comment Form . 269
7.5.2 Set up Comment Previews . 269

7.5.3 Rich-Text Editors for Comments . 270

7.5.4 Adding Comment Quicktags . 272

7.5.5 Comment Management and Spam Prevention . 274

7.6.1 Controlling Comment Spam . 274
7.6.2 WordPress’ Built-In Anti-Spam Functionality . 275

7.6.3 Anti-Spam Plugins for WordPress . 276

7.7.1 Other Considerations & Techniques 278
7.7.2 Enhancing and Encouraging Comments . 279

7.7.3 “nofollow” Links . 280

7.7.4 Integrating Twitter . 282

8 Search Engine Optimization
8.1.1 SEO Strengths and Weaknesses . 287

8.1.2 Strong Focus on Content . 287

8.1.3 Built-In “nofollow” Comment Links . 288

8.1.4 Duplicate Content Issues . 288

8.2.1 Controlling Duplicate Content . 289
8.2.2 Meta noindex and nofollow Tags . 290

8.2.3 Nofollow Attributes . 293

8.2.4 Robots.txt Directives . 295

8.2.5 Canonical Meta Tags . 301

8.2.6 Use Excerpts for Posts . 302

8.3.1 Optimizing Permalink Structure . 302
8.3.2 Default URLs vs. “Pretty” Permalinks . 302

8.3.3 Keep Permalinks Short . 303

8.3.4 Maximize Permalink Keywords . 306

8.4.1 Scoring with Google . 307
8.4.2 Content, Content, Content . 307

8.4.3 Detecting Duplicate Content . 308

8.4.4 Optimizing Heading Elements . 309

8.4.5 Optimizing Title Tags . 310

8.4.6 The nofollow Wars . 312

8.4.7 Fixing Broken Links . 313

8.4.8 Using a Sitemap . 314

8.4.9 Other SEO tips . 315

8.4.10 SEO-Related plugins . 317

8.5.1 Tracking the Success of Your Site . 318
8.5.2 Statistical WordPress Plugins . 318

8.5.3 Shaun Inman’s Mint Stats . 320

8.5.4 Google Analytics . 320

8.5.5 Other Metrics . 321

8.6.1 Closing Thoughts on SEO . 322

9 Maintaining a Healthy Site

9.1.1 Keeping a Site Healthy . 325
9.1.2 Securing WordPress . 325

9.1.3 Setting Secure File Permissions . 326

9.1.4 Disabling Directory Views . 328

9.1.5 Forbid Access to Sensitive Files . 330

9.1.6 Neuter the Default “admin” User Account . 341

9.1.7 Remove the WordPress Version Number . 342

9.1.8 Securing Your Database . 342

9.1.9 Secure Multiple Installations . 345

9.1.10 Prevent Hotlinking . 345

9.1.11 More WordPress Security Help . 346

9.2.1 Stopping Comment Spam . 348
9.2.2 Configuring Your WordPress Admin Options. 349

9.2.4 Using the Built-In Comment Blacklist . 350

9.2.5 Disabling Comments on Old Posts . 350

9.2.6 Deny Access to No-Referrer Requests . 351

9.3.1 Monitoring and Fixing Errors . 352
9.3.2 Alex King’s 404 Notifier Plugin . 352

9.3.3 Broken Link Checker Plugin . 353

9.3.4 Other Error-Logging Techniques . 353

9.3.5 Online Monitoring Services . 354

9.4.1 Staying Current with WordPress . 356
9.4.2 Updating WordPress . 357

9.4.3 Logging Changes . 358

9.4.4 Backing Up Your Database and Files . 359

9.5.1 Optimizing WordPress . 360
9.5.2 Content and File Caching. 360

9.5.3 File Compression Methods . 362

9.5.4 Optimizing CSS and JavaScript . 363

9.5.5 Reducing the Number of HTTP Requests . 365

9.5.6 Plugin Maintenance . 369

9.5.7 Database Maintenance . 370

9.5.8 Other Optimization Techniques . 371

10 Bonus Tricks!
10.1.1 Everybody Loves Bonus Tricks . 377

10.2.1 Add Author Bios to Single Posts . 377

10.3.1 Adding a Theme Options Panel . 380

10.4.1 Free WP Theme: Lines & Boxes . 384
10.4.2 Child Themes . 385

10.4.3 AJAXing a Theme ("All AJAX" Free Theme) . 386

10.5.1 Free WP Theme: Plastique . 387

11 WordPress 2.9 Update
11.1.1 Live a River... 391

11.2.1 New in WordPress 2.9 . 391
11.2.2 Image Editor . 392

11.2.3 Trash Can . 393

11.2.4 Embedding Videos with oEmbed . 394

11.2.5 Database Maintenance Tools . 396

11.2.6 Canonical Meta Tags . 394

11.2.7 Post Thumbnails . 398

11.2.8 Metadata API . 402

11.2.9 Widgetized Sidebar Descriptions . 403

11.2.10 Custom Post Types . 403

11.2.11 New Theme Templates . 404

11.2.12 Register Feature Support . 405

11.2.13 Custom Theme Directories . 406

11.2.14 Other Cool Changes in WordPress 2.9 . 406

12 WordPress 3.0 Update
12.1.1 Giant Leap Forward... 409

12.2.1 New in WordPress 3.0 . 409
12.2.2 Goodbye Kubrick, Hello TwentyTen . 410

12.2.3 Goodbye “admin”, Hello Custom Username . 411

12.2.4 Custom Background Support . 411

12.2.5 WordPress MultiSite: The Merging of WordPress with WPMU 414

12.2.6 Using Custom Taxonomies . 419

12.2.7 Creating and Using Custom Menus . 420

12.2.8 Custom Post Types . 423

12.2.9 Shortlinks . 425

12.3 Other Awesome 3.0 Features . 428

12.4 Just the Beginning... 429

8

Don’t make something unless it is both

necessary and useful; but if it is both

necessary and useful, don’t hesitate to

make it beautiful.

— S H A K E R P H I L O S O P H Y

1

9

Welcome to WordPress

1.1.1 Welcome
Welcome to the wonderful world of WordPress. Say that ten times fast! Sincere
thanks for purchasing our book and we hope the information will be as useful to
you as it already has been for us.

1.1.2 Why WordPress is Amazing
There are all sorts of reasons you may have bought this book, but one of them
might be because you are already a fan of working with WordPress. That’s great,
because we are too, and it’s probably going to show.

WordPress makes controlling the content of a website easy. It can be done by you,
or you can train another person to do it, because the Admin area is as intuitive as it
is powerful. WordPress gives you the keys to build sites easily with all the modern
features that clients crave. And because WordPress is free, open source, and has
fostered a giant community around it, you’ll always be in good hands. WordPress
has changed the face of publishing content on the web, and we are all reaping the
benefits. For all these reasons and more, we can safely say that WordPress
is amazing.

If you are buying this because your boss is making you design a site around
WordPress and you are none too happy about it… Bummer. But hopefully by the
end we can turn your frown upside down and bring you into the light.

Plan

1. Buy Book

2. ???

3. Profit!

10

1.1.3. How to Set up and Configure WordPress
In this book you are going to learn how to set up WordPress. You’ll learn that
installing WordPress is “famously” easy. Then we’ll discuss the various settings,
explaining them as we go, and offering our professional opinions on why we
recommend the things we do.

In section 2.3.2 we discuss your choices with URL structure…

In section 2.6.1 we go about choosing the perfect theme…

In section 2.7.4 we go through some plugins that can be useful for any site…

1.1.4 How to Implement Advanced Functionality
We are going to go through some things that you can do with WordPress that are
above and beyond the standard call of duty. For example, we’ll cover how to use
WordPress as a “full-blown Content Management System (CMS),” and try to dispel
the myth that WordPress is just another blogging platform. We’ll explore things
like using page templates and page hierarchies, dynamic tiered menus, custom
fields, and even fancy stuff like shortcodes.

Of course no discussion of advanced WordPress functionality can happen without
discussing plugins. The flock of geniuses that is the WordPress community
is responsible for an ocean of plugins that extend and advance the built-in
functionality of WordPress. We will discuss quite a few of these plugins (all
throughout the book), and even share the basics of writing your own.

In section 5.5.1 you’ll learn about using WordPress as a full blown CMS

In section 5.6.1 you’ll get a long list of plugins to check out for extending
WordPress’ functionality

In section 6.6.5 you’ll learn how to create custom RSS feeds of your content

In section 7.4.4 you’ll see how to style comments in special ways for your authors
and other members

11

1.1.5 How to Optimize and Secure WordPress
Out of the box, and with a full cup of common sense, WordPress is a reasonably
secure software package. But if you are up to snuff as a web designer/developer,
you understand the importance of security and know that it is up to you to
do everything possible to keep your site safe and secure. There are a slew of
precautionary measures you can take to help with security, and we’ll show you all
of them. Things like locking down sensitive files, checking file permissions, and
using various manifestations of “security-through-obscurity.”

While we are at it, we’ll customize our sites to streamline and optimize the
efficiency of WordPress. Many of the things that can make WordPress faster
are also things that can make any site faster, like reducing HTTP requests and
optimizing images. But there are many WordPress-specific things you can do
as well, like caching data, keeping your database optimized, and reducing the
number of database queries.

In section 8.2.1 you’ll learn to control potential duplicate content problems

In section 9.1.5 you will learn how to secure your sensitive files

In section 9.4.4 you’ll learn how to back up your database, in case of the worst

Around the time of the writing of the first version of
this book, a serious security bug swept through the
WordPress world. Any version of WordPress prior to
2.8.4 was affected by it. The exploit was able to create
an additional administrator account inside WordPress
giving access to do just about anything with your site.
The bug was fixed, users just needed to upgrade!

WordPress’ popularity makes it a big target for bad
guys. But that same popularity ensures fixes happen
fast and security gets better and better. We will go
through lots of security measures in Chapter 9.

The big take-away here is: make sure to upgrade
WordPress as soon as you can when new versions
come out. It only takes a few clicks.

Upgrade, Upgrade, Upgrade

12

1.1.6 How to Maintain Your WordPress Site
As time goes by and your site grows and matures, there are steps to be taken to
make sure your site remains happy and healthy. It should go without saying that
you should keep your WordPress core up to date with the latest version, and that
also means keeping your themes updated with the latest functions. As a top-
notch web star, you’ll of course also want to keep an eye on your server logs, fight
against 404’s and broken links, and keep up with your moderation duties.

In section 8.5.4 you’ll get an intro to Google Analytics and other metrics you can
monitor on your site

In section 9.2.3 you’ll start to learn how you can fight against comment spam
using WordPress’ built-in features

In section 9.3.3 you’ll learn about a plugin to watch for broken links on your site

1.1.7 Don’t Worry
We sincerely hope none of this sounds daunting or over your head, because it’s
not. WordPress is easy, especially compared to its beastly competitors.

1.2.1 So, You’ve Never Heard of WordPress
If this is your first shindig with WordPress, there are a few things that may not be
instantly obvious. If these things are obvious, good, you’re ahead of the curve, and
remember there was a time in all our lives these things were not obvious.

Static vs. dynamic sites

Your old Geocities page? That was a static site. Your new WordPress powered site?
That is a dynamic site. Dynamic sites have content that is stored in databases and
pulled out and displayed as instructed by templates. This is a powerful way to build

13

sites. It may seem complicated at first, but the flexibility offered by dynamic sites is
well-worth the price.

Dynamic sites are…

• Better for designers - templates make it far easier to make global changes to
a site.

• Better for developers - having content in databases allows them to get you
what you need when you need it.

• Better for site managers - it puts publishing into their hands with tools
meant for normal people to use.

• Better for visitors - because the site you create with it will be fantastic!

WordPress.org
This book is about the self-hosted, download-and-
install-it-yourself version of WordPress. This is the
WordPress to which WordPress.org is dedicated,
enabling you to download the latest version,
participate in the forums, and browse the Codex (the
extensive and official WordPress documentation).

This is the version that is for “real” designers and
developers, as it offers you absolute and total control
of your site, for use on your own servers, with no
usage restrictions at all.

WordPress.com
Perhaps introducing slight confusion, there is also a
WordPress.com, which is a hosted blogging service
owned by the same parent company (Automattic).
Sites hosted at WordPress.com are located at URLs
like “yoursite.wordpress.com” and are largely used
only for blogs. There, you have less control, can’t do
things like use plugins, and cannot deliver your own
advertising. Of course, it’s also free, easy, and uses
essentially the same Admin as self-hosted WordPress,
so it’s great for your Mom; but even so, we’ll be
using the real WordPress for our websites!

http://wordpress.org
http://wordpress.com

14

1.2.2 One Template, Many Pages
If you are a web designer, you’re probably already at least a little familiar with
Cascading Style Sheets (CSS). It’s such a beautiful concept. A single CSS file
controls the design for lots of pages. So if one day you decide that your dark-red
background color should be a little lighter red, you can make one little edit and
cause a sweeping design change to your site (as opposed to opening hundreds
of pages and making the change on each one). That’s what a CMS like WordPress
does, only instead of abstracting design away, it abstracts the content away.

With a template system like WordPress, you can make a change to the template
and change the way all the pages that use that template are displayed. Perhaps
you want to display the date above each Post title instead of below? No problem,
just change the template. In this day and age, HTML isn’t for actual content, just
structuring content.

1.2.3 Powerful, Flexible and Extensible
You can witness the power and flexibility of the template system very easily,
because WordPress allows you to quickly change the entire template you are using
with just a few clicks. Find a new theme you like while browsing the web? You
can upload it to your own site and activate it in seconds. All your content will then
flow into this theme auto-magically! It’s a wonder to behold, but remember not to
change your theme too often or your visitors will be lost and confused.

The same things that make WordPress themes flexible also make them extensible.
For example, adding new content to your sidebar is likely as easy as opening your
sidebar.php and adding in the new stuff. Your theme might even be widget-ready
(see section 4.9.1), meaning you can add, alter, or remove content and functionality
from your sidebar (or any other widget-ready area) without looking at any code
at all.

Appropriate Uses

CSS = Design

Database = Content

HTML/PHP = Get &
Describe Content

JavaScript = On-page
Functionality

Don’t Cross the Streams!

15

1.3.1 Key Components of a WordPress Site
There are some things that need a bit of explaining before we get much deeper.
For lack of a better term, we’ll call them “components.” Components represent the
main parts of a WordPress site, including the actual files that make things go, and
the database that houses all of the data. Together, these two components – the
files and database – generate the web pages for your site. Once generated, there
are two central types of these web pages, the Admin area that only you see, and
the public pages that the whole world can see. Let’s take a closer look at each of
these different components.

1.3.2 WordPress Core Files
When you go to WordPress.org and download a copy of WordPress, you are
downloading the WordPress core files. It’s a big folder full of files and a few
subfolders full of even more files. Once you download and unzip the WordPress
package, you’ll notice that most of the file and folder names begin with a “wp-”
prefix.

The WordPress core files are the things that make WordPress tick, the things that
make WordPress a complete software package. Most of these files you’ll never
touch. A few of them you’ll touch very rarely, and a certain subset of these files
you’ll be in and out of all the time, especially when building a theme.

1.3.3 The WordPress Database
To get WordPress installed and running, you will need to set up and configure a
MySQL database. The WordPress core files don’t actually contain any of your site’s
content, they merely provide the functionality required to display the content
stored in the database. All of your blog posts, plugin settings, and site options are
contained in the database.

This can be a bit of an abstract concept, especially since the database is something

16

you may never actually see. It’s not even a “file” on your server that you could see
and download (unless it’s a backup copy). It just kind of lives in the cloud that is
your server, humming along and doing its thing.

Despite being this elusive and abstract entity, the database is arguably the most
important part of your WordPress site. All the Posts, Pages, Revisions, Comments,
Users, and all of your other content and settings reside exclusively within the
database. Even if you had a total server meltdown and lost everything, with a
backup copy of the database you would be okay. You could reinstall WordPress,
find a workable theme, and be back up and running in minutes while you worked
on rebuilding the design. On the other hand, if you also lost the database, you
would have lost every single bit of content on your site forever. In other words,
don’t lose your database!

This is what the “Dashboard”
of the Admin area looks like.
There is lots of functionality,
information, and navigation
here. Fortunately it is beautifully
designed, and feels natural to use
after a short learning curve.

The Dashboard can also be
customized. Eliminate things
you don’t use through a simple
dropdown and checkboxes. Then
rearrange the “modules” by simple
drag-and-drop.

Choose your poisons.

Drag and drop modules
from their title bar.

Database Backups

For information about backing
up your database, see
Chapter 9.4.4

17

1.3.4 The Back End
The back end of WordPress, heretofore known as the Admin area, is the part of
WordPress that is seen only by you, your co-authors, and your site administrators.
You view this area directly through a web browser and it is used to create and
control all of the content and otherwise manage the site. This is essentially a secret
hidden area which normal visitors will never see and likely don’t care about.

1.3.5 The Front End
The end result of these various WordPress components is the part of your site
that visitors actually see and care about: the front end. The front end of your
WordPress-powered site consists of all your site’s publicly available web pages.
Posts, Pages, Archives, everything.

So let’s put it together and see how the front end is generated. First, the content
you create in the Admin area is stored in the database. Then, the core files interact
with the database to render the website for your visitors. The front end is where
WordPress brings the magic together and makes it happen.

1.4.1 Tools of the Trade
You are going to need an internet connection. Shocking, we know. What else?

1.4.2 A Domain Name
Since we are working with the self-hosted version of WordPress, we are going
to need an environment to work. That’s what “self” means – bring your own
environment. The first step is getting a domain name (digwp.com = a domain
name). If you’ve never gone through this process before, don’t worry it’s really not
too big of a deal, despite the often horrendous user-interface of many of the major
retailers. GoDaddy.com is a popular choice for purchasing domains.

Real Estate

Owning your own domain
name is like owning your
own house. You don’t have a
landlord telling you that you
can’t knock down that wall
or you can only put up posters
with poster putty. With your
own site, you can do whatever
you want.

18

1.4.3 Web Host / Server
Owning a domain name is half of the equation. Now you need a web server to
point that domain toward. The web server will then do its thing and serve up your
website. You don’t need to buy your domain and hosting at the same place, and
in fact, we advise against it. For example, a hosting company doesn’t have a whole
lot of incentive to offer you support in moving your hosting to a different server,
should that ever become necessary.

Hosting is more expensive than domain names, but for low to medium traffic sites,
even basic hosting plans are adequate. Digging into WordPress served 150,000
pageviews per month at the time of this writing. It is hosted on a $20/month Media
Temple plan alongside many other sites, runs great, and will for a while to come.

19

1.4.4 Text / Code Editor
Your FrontPage / Dreamweaver days are over. WYSIWYG editors will be of no use
to you while building dynamic, WordPress-powered websites. You are better than
that anyway. We are going to get our hands dirty with real code, so you need to be
using a real code editor.

Here is a summary of some of the better code editors currently available:

Mac TextMate $59 http://digwp.com/u/231

Mac TextWrangler Free http://digwp.com/u/232

PC UltraEdit $49 http://digwp.com/u/233

PC Notepad++ Free http://digwp.com/u/234

Both jEdit Free http://digwp.com/u/235

1.4.5 FTP Program
To connect to your web server and transfer files back and forth from your
computer, you’ll need some FTP software. If the program transfers files, you are
good to go, but some also have swell features you may be interested in. You make
the call.

Mac Transmit $29 http://digwp.com/u/236

Mac Fetch Free http://digwp.com/u/237

PC WS_FTP $34 http://digwp.com/u/238

PC AutoFTP Free http://digwp.com/u/239

Both FileZilla Free http://digwp.com/u/240

Both FireFTP Free http://digwp.com/u/414

Double Cool

Coda for the Mac is an FTP
client and code editor rolled
into one. It also has a built-in
terminal, reference manuals,
code sharing via Bonjour, and
subversion support.

The code editor may not be as
robust as some of the others,
but the combo functionality is
pretty sweet.

http://digwp.com/u/18

Chris’ OS X dock

http://digwp.com/u/231
http://digwp.com/u/232
http://digwp.com/u/233
http://digwp.com/u/234
http://digwp.com/u/235
http://digwp.com/u/236
http://digwp.com/u/237
http://digwp.com/u/238
http://digwp.com/u/239
http://digwp.com/u/240
http://digwp.com/u/414
http://digwp.com/u/18

20

Computer with Internet

Domain Name

Web Hosting

Code Editor

FTP Software

Mad Skillz
…we’re getting there!

21

John Boardly’s I Love
Typography is a beautiful
WordPress powered site.

http://ilovetypography.com/

http://ilovetypography.com/

A complex system that works is invariably

found to have evolved from a simple system

that worked. The inverse proposition also

appears to be true: A complex system

designed from scratch never works and

cannot be made to work. You have to start

over, beginning with a working simple system.

— J O H N G A L L

22

2 Setting Up WordPress

23

2.1.1 The Famous Five Minute Install
Installing WordPress is famously easy. Upload files, create database, update the wp-
config.php file, and go through the online installer which is only a handful of very
simple questions. The more times you do it, the faster you get at it. Five minutes,
ha! You’ll be down to two-and-a-half in no time.

2.1.2 Where To Install?
When you download the core files from wordpress.org, you end up with a .zip file
sitting there on your computer. Unzip it, and you have a folder called “wordpress”
that is full of files. One option is to upload the contents of that folder right to
the root directory of your website and start the installation process. We suggest a
slightly different approach.

Instead, rename that folder something strange and obscure,
like “blackmothsuperrainbow” and upload that folder to the root
directory of your site. Then you say, “But wait! I don’t want my
site’s URL to be http://mydomain.com/blackmothsuperrainbow/!”
Of course not, good sir, that would be strange and obscure. You
definitely want WordPress to control the root of your site. In order
to do that, just move the index.php file and the .htaccess file from
the blackmothsuperrainbow folder back to the root directory. Then
open the index.php file and change this:

Awwwwww.
Isn’t it cute?

The “How”

We didn’t want to waste a
bunch of pages explaining
“how” to install WordPress.
It’s not complicated, and is
covered in detail at the Codex:

http://digwp.com/u/241

http://digwp.com/u/241

24

require('./wp-blog-header.php');

…to this:

require('./blackmothsuperrainbow/wp-blog-header.php');

You’ll now have to log in at http://mydomain.com/blackmothsuperrainbow/wp-admin/,
but WordPress will be in control of the root just as if that were its actual location.
Once you have installed WordPress and logged in to the Admin area, go to Settings
> General and ensure that the settings for your WordPress address (URL) points
to http://mydomain.com/blackmothsuperrainbow/ and Blog address (URL) points to
http://mydomain.com/. Of course, when choosing the name of your installation
directory, you should use your own strange and obscure word.

Why go through these extra steps just to install WordPress? The benefits are
twofold and significant:

1. Security through obscurity. Any evil bots scanning and probing your site
looking for possible WordPress exploits probably won’t even be able to find
your WordPress files.

2. It keeps your root directory clean. Nothing worse than a messy root
directory. Except for maybe a hacked site.

2.1.3 Checking Default Performance
and Proper Functionality
After you have completed the installation and are looking at the Dashboard in the
WordPress Admin area, you should take a little time to click around and make sure
things appear and behave as expected. If you are already looking at the Dashboard
and things seem normal there, click your site title in the upper left and visit the
front end of your site. Does it load up and look like a website? When you click
links, do they work and take you to the appropriate places?

The “default” theme of
WordPress used to be
Kubrick which was pretty
gnarly. Getting rid of that
was priority #1. WordPress
3.0 now comes with the
"TwentyTen" theme which is
quite nice. See Chapter 12.2.2
for more information.

First things first

If you are moving the
WordPress core files after
installation, change the Admin
settings first, then move the
index and htaccess files.

25

Ninety-nine percent of the time, everything is going to be fine after a fresh
WordPress installation. But even so, now would be the absolute best time to verify
that everything is running properly, smoothly, and as expected. You want to check
everything out now, because fixing things at this point will take much less work
than later on in the game. Once we have verified that, yes, WordPress is operating
beautifully, it’s time to dig in a little deeper.

2.2.1 OK, I’m In. Now What?
First of all, you should probably crack a beer. You’ve successfully installed an
incredibly powerful publishing platform and are well on your way to creating
a killer website.

2.2.2 Just Publish Something!
We have the whole rest of this book to prod and poke at settings and alter code
and nitpick the details. But none of that has any context unless you get your feet
wet a little bit and start getting a feel for how WordPress works and how easy
it makes publishing content. It’s like learning to play the guitar. You can force
yourself to play scales and learn chord voicings all day, but you’ll be bored to tears
and the information won’t stick as well as it would if you have some context (a
song) to attach it to. More fun and more effective, what a concept.

So why don’t you click that “New Post” button right up at the top of your
Dashboard. Then type yourself in a title in that top box, maybe write a few
sentences about your cat, then hit that big blue “Publish” button.

2.2.3 Go Look At It!
Now go check your homepage and see the fruits of your last few seconds of labor.
Brand new content, sitting right there for your next visitor to read. BAM! Feel the
power. Does it feel good? We thought so. Now we need a plan.

Shock teenage gangsters

Someone submitted a code
snippet to us with this title.
It was just a simple .htaccess
redirect of the wp-config.php
file (only for use on NON
WordPress sites), but that
name was too awesome not to
publish. Check it:

http://digwp.com/u/422

http://digwp.com/u/422

26

2.2.4 The Plan
As we surf through the rest of this chapter, what we are really doing is developing
a “plan” for your site. As you read through the following sections, envision how
each setting, feature, or option would relate to the site you are building right now.
If you aren’t building anything right now, perhaps think of a fictional site so you
have some context. I like to think I’m building a site called “Aunt Bea’s Pie Site,” a
site dedicated to Aunt Bea and her amazing pies.

Throughout the book we will also be peppering you with plugins that do this
and that and may be of value to your site. There are some plugins though, that
are universally useful to any WordPress site. We will cover these at the end of this
chapter.

2.3.1 Permalinks: Your URL Structure
The default, out-of-the-box setting for WordPress permalinks is a bit gnarly. They
look like this:

http://mydomain.com/?p=12

Why is that? Why doesn’t WordPress come with a better default setting? Well it’s
because this setting doesn’t require any special server files or setup at all. The “?p=”
part of the URL references Post and Page IDs (like little secret codes that are unique
to every Post or Page). The value after the equal sign is the value for that particular
parameter. So the link above tells WordPress to “retrieve and display the Post or
Page that has the ID value of 12.” And, like man’s best friend, WordPress will obey.

As practical as these default URLs are, you would rather that your URLs looked
more readable, like “http://mydomain.com/super-big-contest/.” With a URL like
that, the server is by default going to look for a file or subdirectory named “super-
big-contest” and take you there. But, with a dynamic platform like WordPress,
that directory doesn’t actually exist! WordPress doesn’t actually create a physical
directory structure for all of your posts and pages, it just “fakes it” with a little
magic from a special little file called .htaccess.

27

2.3.2 HTAccess
The full name for this file is literally “.htaccess”. It begins with a period and has
no file extension. Weird, we know. Some operating systems treat files like this
differently. For example, in Mac OS X, files that begin with a period are “hidden”
from view. A default download of WordPress does not include this file. Yet, it is
this file and its contents which make all special permalink handling possible in
WordPress.

The .htaccess file should exist at the root directory of your WordPress install, but
don’t run off and create one just yet. In many server environments, WordPress can
do this automatically for you, which is the best way to go (less error-prone). Simply
go into your Settings > Permalinks area and choose any setting other than the
default and click “Save Changes.” If you received the following response message,
you are all set:

Permalink structure updated.

This means WordPress was able to create the .htaccess file and add to it the
proper code. If you did not get this message, you will instead get a box of code

Short URLs
A “short URL” is just like it sounds, a URL with
very few characters. These have become popular
because of services like Twitter which have a
strict 140-character limit on messages, including
URLs. Services like Bit.ly can create these for you
and they look like this: http://bit.ly/11q4xv

There is always controversy with short URLs,
despite their obvious usefulness. The URLs
themselves provide no useful information to
users. Worse, if the service were to close, there
would be a ton of non-resolving URLs out in
the wild. As such, rolling your own short URLs is
getting more and more popular.

One cool thing about WordPress, is that the
default URL structure is pretty short all by itself:

http://digwp.com/?p=212

You can get this link by just clicking the Get
Shortlink button from the post editor.

This book uses the Short URL plugin. Here is a
strangely meta short URL to that:
http://digwp.com/u/460

Apache

HTAccess files are only
applicable to Apache web
servers. If you are running
shared hosting that you
purchased yourself, there is a
good chance it’s Apache.

If you aren’t using Apache,
you can still get somewhat
decent permalinks. See the
PATHINFO section here:

http://digwp.com/u/19

Pop up tweeting box from the
Mac app Tweetie.

http://digwp.com/
http://digwp.com/u/19

28

that literally tells you to update the .htaccess file manually. If this is the case, you
will actually need to do the grunt work yourself. If so, don’t panic. Simply create a
new .htaccess file in the root directory of your WordPress install, and then insert
the HTAccess code that WordPress provides. It’s going to look something like this:

BEGIN WordPress
<IfModule mod_rewrite.c>
 RewriteEngine On
 RewriteBase /
 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteCond %{REQUEST_FILENAME} !-d
 RewriteRule . /index.php [L]
</IfModule>

END WordPress

2.3.3 Which Style of Permalinks?
WordPress enables you to choose your own permalink structure. Although the
format you pick for your permalinks is largely a matter of personal style, you
should consider carefully the context of your site when making your decision. For
example, Is your site clearly a blog with frequent postings? Perhaps a “/%year%/%mo
nthnum%/%day%/%postname%/” structure is best for you. Let’s say you are planning to
have a site full of record reviews. The date may not matter as much, so picking a
structure more like “/%category%/%postname%/” makes more sense. Planning on very
few posts with “timeless” content? Maybe “/%postname%/” is sufficient all by itself.

Examples of different permalink structures

On digwp.com, we use a URL structure with partially dated permalinks:

http://digwp.com/2009/01/redirect-category-search-and-tag-urls/

Obscure Bug

If you use %category%
to start your permalinks,
pagination of those actual
category pages may not work
correctly. There is a plugin fix:

http://digwp.com/u/33

%postname% woes

Using ONLY the postname
in the permalink structure
apparently has some
performance issues:

http://digwp.com/u/463

Although to be honest, that's
what CSS-Tricks.com uses
and it has never seemed to be a
big deal.

http://digwp.com/u/33

29

On QuotesOnDesign.com, the date is less important and the permalink is simply the
author of the quote:

http://quotesondesign.com/felix-sockwell/

On EnvisionCad.com, the posts are categorized into just a few major categories, so
permalinks like this make the most sense:

http://envisioncad.com/training-dates/residential-grading/

2.3.4 Pick One and Stick With It
Once you have decided on an optimal permalink structure, do your site a favor and
stick with it for the life of your site. People use these links to link directly to your
site, and up and changing them down the line isn’t a good idea. While modern
versions of WordPress are typically smart enough to get modified URLs redirected
to the right place, it doesn’t look nice in people’s browsers and isn’t doing any
favors for your search engine optimization (SEO) efforts.

2.3.5 SEO Consideration: Mind Your Post “Slugs”
As it is called, the “slug” of a WordPress URL is a special string of characters that
represents each post in a URL-friendly way. To illustrate, if you write a post called
“57 Ways to Cook a Gizzard, Plus One Way You should Definitely not Cook a
Gizzard,” the slug that WordPress will auto-generate for your post will look like
this:

57-ways-to-cook-a-gizzard-plus-one-way-you-should-definitely-not-cook-a-gizzard

That is going to be one heck of a URL if you use /%postname%/ in your permalink
structure. Most research suggests that incredibly long URLs like this are undesirable
for SEO. Fortunately, you aren’t stuck with your slugs! After your post has been
saved at least once, you’ll see a small area right underneath the box where you
enter the post title in the post-editing screen. There, you can change the post slug

Optimizing Permalinks

For more information on how
to create and optimize your
site’s permalinks, check out
Chapter 8.3.1, Optimizing
Permalink Structure and also
this comprehensive overview on
our own blog:

http://digwp.com/u/461

Cool URLs Don’t Change

Don’t believe us? Here it is
straight from the horse’s mouth:

http://digwp.com/u/383

Old Slugs

There are plugins out there
that help handle redirecting old
links to new links should the
slug of the page change or the
permalink structure change.
That's awesome, but just not
changing links is even better.

http://digwp.com/u/383

30

to anything you would like, but remember to avoid any strange characters. Stick
with lowercase letters, numbers, and dashes or underscores. Here is a much better
“slug” for our example:

Good: http://gizzards.com/how-to-cook-a-gizzard

Bad: http://bad-jokes.com/really-dumb-jokes/10/2008/your-momma-is-so-fat-she-
sat-on-a-dollar-and-made-four-quarters

But hey, even at its worst, WordPress isn’t that bad. It certainly could be worse.

Really Bad: http://www.surfboardsforyou.com/boards/filename.php?id=F98ZF4&prod
uctId=39222§ion=wicked&brand=582&template=532

Takeaway tips for creating optimal permalinks:

• Short is good
• Keep the overall URL structure relevant to the site
• Make the slug a memorable representation of the post

2.4.1 Categories and Tags
WordPress Posts and Pages will be the new home for loads and loads of your
content. We already know that each of them has a unique ID, slug, and date stamp.
That helps a bit in terms of organization and archiving, but WordPress has better
methods in store for us. There are no pre-set categories or tags in WordPress. For
example, the default “Hello, World!” post in WordPress is by default categorized
as “Uncategorized” and has no tags. Thus, you’ll need to create your own set of
categories as you begin working with WordPress and as needed anytime thereafter.

In the old days, there was no way to “mass” assign or remove categories so adding
a new category that old content fit into was a matter of going back and editing
lots of posts one-by-one. Nowadays, you can click the checkboxes on the Edit Posts
screen, check multiple boxes, and select Edit > Apply and get a screen for mass
editing. Still, we generally believe you should put some thought into your category

Always There

Keep in mind that, even when
you can’t see them or don’t
use them in your permalink
structure, IDs, dates, and
other post- and page-specific
information is always
associated with your posts
and pages from within
the database.

But really, we’re sure your
mother is very good looking.

31

plan early on, just to help make sure things don’t get out of
hand later on.

In addition to categories, each post may also be assigned any
number of Tags. Tags are used to further categorize content at a
more specific level. A real world example will serve us well here,
so let’s take a look at a Post on the DigWP.com website:

Title: Custom WordPress Title Tags

As you may have guessed, the content of this post is about
how to create great titles in WordPress (see section 3.3.4). You
might think we’d categorize this as “WordPress,” but in fact our
entire site is about WordPress so that would be quite pointless.
Instead, we have categorized this post as “PHP,” since it
specifically deals with PHP functions to accomplish what we are
writing about. “PHP” is the primary subject of this article, hence
its designated category, but it isn’t the only subject that the
post talks about. Thus, we specify several Tags to indicate that
content also contains information about “headers,” “titles,”
and “tags.” Indeed, these are the Tags chosen for that article.

If that example is too specific and self-referential, think of the
example of a photograph of a tree. You would categorize this
as “Photograph,” or if your site was all photographs, “Tree.”
You then might tag the photo as “fall,” “leaves,” “sunset,” and
“beautiful” – assuming those things accurately described
the photos.

Remember that the purpose for all of this categorizing
and tagging is ultimately to assist visitors (and yourself) in
navigating your site and what is sure to be a huge amount
of content. The larger your site grows, the more difficult it
becomes to organize your content such that it is easily findable.
Categories and tags offer your visitors a way to navigate your
content in a conceptually logical way. For example, if the viewer

Eliminating
“Uncategorized”
WordPress comes with a single post already
published on your site when you install it:
“Hello, World!” Because all posts need to
have at least one category, it is assigned to the
default category, “Uncategorized.”

Uncategorized is rather unsightly, but
unfortunately you can’t delete this category.

The reason for this, as mentioned above, is that
all posts need to be assigned to at least one
category, so there had better be at least one
category that can never get deleted!

Your best bet is to edit this category, and name
it something more appropriate for your site.
Is your site about dogs? Maybe just edit this
category and call it “Dogs.” Just be sure to
categorize your posts more appropriately as
you start writing.

There is no checkbox for Uncategorized

32

of our “Custom WordPress Title Tags” post was interested in reading more articles
about PHP, they could click on the link for the “PHP” category to see a list of more
posts on the topic.

2.4.2 They are Basically the Same
Categories and tags are treated slightly different in the admin panels. Tags you
type in one by one (or choose from the tag cloud) whereas Categories you pick
from the list of checkboxes. Don’t be fooled though, on a purely functional basis
Categories and Tags have no significant difference. The URLs that point to their
respective archives, however, are slightly different:

http://digwp.com/category/php/

http://digwp.com/tag/header/

Each of these URLs commonly use the same theme file (archive.php) to display a
list or summary of each of their included posts. These URL structures are able to
be customized (go to Settings > Permalinks), but they will by default use the same
archive.php theme file to display the posts that belong to the specific Category or
Tag. The way in which these posts are displayed on the front end depends on the
actual contents of your theme’s archive.php file. We’ll elaborate further on this
concept in the next chapter.

2.4.3 Use Only One Category Per Post
It is generally considered best practice to only categorize each of your Posts with
one category. This will serve you in two ways. First of all it is less confusing for
people browsing your content by category, as they won’t find any cross-over and
potentially confusing situations where they aren’t sure if an article they found in
two places is really the same or not. The other is potential duplicate content issues,
where search engines may find your post in several different places and think you
are trying to game the system by adding lots of similar content all over.

Function Differences

While it’s true that tags
and categories are largely
interchangeable, there are some
functions which use them in
different ways. For example, it
is easier to exclude a category
from the loop with query_posts
than it is to exclude a tag.

query_posts('cat=-3');

There is no similar parameter
for excluding tags.

33

Another advantage to using single categories is that you may wish to style posts in
different categories in different ways. The most sure-fire way to accomplish this is
to make sure Posts only have one so you don't have to deal with conflicts.

2.4.4 Use Multiple Tags Per Post
The default wisdom for tags is to use them to identify sub-topics or minor points of
interest inside the Post. So lets say you were publishing a Post that was a review of
a 1969 Martin Acoustic Guitar. If your site was based on music in general, this Post
might be categorized as “Instrument Review,” but with tagging, we can get more
specific. We might tag this “martin,” “1969,” and “guitar.” Then later you write a
review of The Who’s first rock opera, Tommy. This might be categorized as “Album
Review,” and then tagged as “the who,” “rock opera” and… “1969.” So these two
posts share the same tag, “1969.”

Now we are starting to build some fun navigational possibilities for our users. If
we build some Tag-based navigation, people could click the 1969 tag and see all
the Posts of things related to that year. This will get more and more interesting as
you continue to publish and tag, and may even open up some connections that you
didn’t think about.

2.4.5 Don’t Go Overboard!
The whole point of using Categories and Tags is to assist human beings in
navigating your site in intuitive ways. If you have 350 different categories on your
site and use all of them lightly, this is well beyond the point of useful scanning and
browsing. Our advice is to keep the number of your categories around 15 or less
and that of your tags at around 100 or less.

Duplicate Content

We show you how to control
duplicate content in Chapter
8.2.1.

34

2.4.6 You Don’t Need to Use Them At All
Keep in mind that you don’t need to categorize or tag your Posts at all. It is
very common practice and can be very useful, but it is not required. This is a
classic example of considering your audience over the technology. If you think it
would mostly be clutter and doesn’t make sense for your site, just don’t bother
categorizing or tagging at all. You can easily remove any referencing links that
might appear in your themes.

2.4.7 Custom Taxonomies
Remember how we just said categories and tags are basically the same? They
are. They are two different “taxonomies,” that is, ways to classify a post. It is
a somewhat of an advanced technique, but WordPress allows you to create
additional taxonomies for classification purposes.

A perfect example is a site that was built to review movies. Movie reviews are
classifiable in so many ways: by Date, Actors, Genre, Director, Producer, and the

list could go on and on. Categories and Tags alone
are insufficient to create the ideal navigational
structure for this site. What we could do is
create new taxonomies for all these different
classifications. Behaviorally, and interface-wise, they
behave just like tags.

Now take a practical example, a movie review for
“Sleepy Hollow.”
Here is a summary:

Post Title: Review of Sleepy Hollow

Category: Review

Tags: Ichabod Crane, New York, Gothic

Actors: Johnny Depp, Christina Ricci

ACTION!

PopCritics.com is a very
awesome example of custom
taxonomies in action. It’s a bit
like IMDb in that everything
is cross-referenced… only
the design is cleaner and the
URLs are nicer.

No Categories

CSS-Tricks.com doesn’t use
any categories or tags at all.
There are dated archives, but
otherwise relies heavily on
search to allow people to find
things they are looking for.
Nobody seems to mind.

35

Producer: Scott Rudin, Adam Schroeder

Director: Tim Burton

Genre: Horror/Suspense

Permalink: http://mymoviereviews.com/review/sleepy-hollow/

The idea is that you can attach all this data to the movie review in
the same normal, natural way as you would attach ordinary tags.
In order to do this, you need to “register” some new taxonomies,
which you can do by adding some code to your functions.php file.

function create_my_taxonomies() {

 register_taxonomy('actors', 'post', array(
 'hierarchical' => false, 'label' => 'Actors',
 'query_var' => true, 'rewrite' => true));

 register_taxonomy('producers', 'post', array(
 'hierarchical' => false, 'label' => 'Producers',
 'query_var' => true, 'rewrite' => true));

}

add_action('init', 'create_my_taxonomies', 0);

With this code in place, now you’ll see some new tagging boxes
show up to the right of the content box when creating a new Post in the Admin
area. You use them in the exact same way as tags.

What we get now, automatically, are new URLs that go along with our new
taxonomy:

http://mymoviereviews.com/actor/johnny-depp/

http://mymoviereviews.com/actor/christina-ricci/

http://mymoviereviews.com/producer/scott-rudin

NOTE

Custom taxonomies are only
available in WordPress 2.8
and above and significantly
improved in 2.9 and 3.0

36

http://mymoviereviews.com/producer/adam-schroeder

http://mymoviereviews.com/director/tim-burton/

http://mymoviereviews.com/genre/horror-suspense/

These URLs would use the archive.php file to display all Posts that are tagged in
that way. In order to create a truly cross-referenced system like this (hey, we could
build our own IMDb!) we’ll need to know how to display this custom taxonomy
information in our themes. It’s a little different than using regular tags.

Display a custom taxonomy tag cloud in your theme

If you would like to display a “tag cloud” containing all of the items in a specific,
custom taxonomy, insert the following code anywhere in your theme files:

<?php wp_tag_cloud(array('taxonomy' => 'people', 'number' => 45)); ?>

Remember to edit the “people” term to match the name of the desired taxonomy.
You may also want to edit the “number” parameter, which specifies how many tags
are to be shown. To display all tags from the “people” taxonomy, use “0”.

Query for posts using a particular custom tag

To display only posts that have a specific tag from one of your custom taxonomies,
place the following code before the loop in one of your theme files:

<?php query_posts(array('people' => 'will-smith', 'showposts' => 10)); ?>

You display posts belonging to any tag from any taxonomy by simply editing the
taxonomy name, “people”, and the tag name, “will-smith”. Lastly, you can choose
to display any number of posts by editing the value “10”. Remember that this code
must be placed before the loop in order to work. We’ll be getting to the loop in
Chapter 4.

More on Taxonomies

We discuss taxonomies a little
further in Chapter 5.5.5.

37

List values of custom taxonomy on a per-Post basis

This code is useful for displaying all of the terms associated with a particular
taxonomy for a given post. Simply place the following snippet where you would
like to display the comma-separated series of tag links:

<?php echo get_the_term_list($post->ID, 'people', 'People: ', ', ', ''); ?>

For each of your posts, the output of this particular example will display all of
the tags associated with the “people” taxonomy. You can change this up to any
taxonomy you want by editing the first instance of the term “people” in the
code. The last three parameters tell WordPress what to place before the tag links,
between each link, and after the tag links, respectively.

2.5.1 Users and Administrators
If you have installed WordPress, then you have set up at least one user. Each user is
basically an “account” on WordPress. When you go through WordPress installation,
you pick your own username and password. That username and password is one
user, but you are not limited to that. You can manually add new accounts, assign
privileges, and even enable visitors to register as users themselves.

Even if your theme doesn’t display
author names on the site itself, author
names are still used in the RSS feed.
Using a properly displayed name is
a nice touch when reading through

RSS. If you don’t want to use your
real name, even something like Site
Manager is nicer looking than the

default “admin.”

38

Neutering the Admin Account

Hey, thanks! Too much information?

WordPress tries to be as helpful as possible on its login screen. Like
any good web application, it tells you when you have an incorrect
password. WordPress does something else though, something that
many people feel gives away too much information. It tells you if
the username you are attempting to use exists or not.

The problem here is that anyone can access your login screen, try
to log in with the “admin” username, and be awarded with the
knowledge that the user does indeed exist, even if they get the
password wrong. Prior to WordPress 3.0, "admin" was the default
username and had full privileges so breaking into that account
would be ideal for them.

We suggest leaving an "admin" account active, but neutering its
privileges. That way, you can keep the baddies guessing, and even if
they do break in, they get nothing.

If your account is currently "admin", create a new user with a new
username, then delete the current "admin" account being careful
to attribute all posts to the new account. Then create the "admin"
account again, only make it a "Subscriber" level user, which has no
add/edit/delete privileges.

Your Login page is a public-facing portal to your Admin area. Obviously, if your
login was somehow compromised, an intruder could do serious harm to your
site, damaging themes, deleting content, and worse. A brute-force password
hack is probably the rarest of ways your site could be compromised, but you
should still have an extremely secure password

• Don’t use something obvious like “password” or “1234”
• Use a combination of letters and numbers
• Shoot for 8 characters or longer
• Don’t use the same password you use for anything else

— This one is just too important!

Extremely Secure Passwords

39

2.5.2 Add a New Account for Yourself
One thing that you cannot ever change, once an account is created, is the
username. That means that the “admin” account will have a user name of “admin”
forever. We recommend not using this account as your regular account. Instead,
set up a new account for yourself right away, using a username that is more
memorable and specific to yourself, but of course with an extremely
secure password.

To do this, go to Users > Add New, fill out all the required fields, and be sure to
choose “Administrator” as your role. Then log out and back in again with your
brand new account. Now go back to Users > Authors & Users, hover over your
existing account, and click “Edit.” You will now enjoy some additional options that
weren’t available when you initially created the account.

With your new account, you can cosmetically change the look of the Admin area
by selecting a new color scheme. More importantly, you can change public-facing
details about your profile. We suggest changing your “Display Name” to something
more sightly, like your real name, for example. You can also edit your biographical
information, preferred URL, and other personal details. This information may then
be displayed on your web pages by calling the information from your theme files.

Old Themes

As you redesign your site over
the years, you should leave your
old themes in the wp-content
folder. It’s kinda fun sometimes
to go throwback. Maybe
your blog could dress up as a
previous version of itself for
Halloween.

40

2.6.1 Choosing the Perfect Theme
With everything that you will learn about WordPress from this book and
elsewhere, it is our hope that you will develop your own themes. Creating your
own theme enables you to get everything looking and working exactly how you
want it, right down to the last detail. But certainly, there is no shame in using
a pre-made theme as you begin your journey with WordPress. After all, many
top WordPress developers (including us!) used pre-fabbed themes as a starting
point. Using someone else’s theme is an excellent way to dig into the process of
customizing and eventually building your own.

2.6.2 Where to Find Awesome Themes
“There are two kinds of themes in this world,” my daddy always told me: “free
themes, and paid themes.” Paid themes often call themselves “premium” themes.
In general, paid themes are going to have nicer designs, be coded a little better,
and may offer fancy theme options. But then he also warned me: “there are
some amazing, high-quality free themes, and there are some downright-bad paid
themes.” We can give you some general things to look for, but you are just going
to have to use your best horse-sense when making the final call.

Free theme resources

• WordPress.org Theme Library - http://digwp.com/u/20
Straight from the motherland. Themes ahoy!

• The Mighty Google - http://digwp.com/u/21
Searching Google will work long after this book has been recycled.

• Digging Into WordPress - can you guess the URL?
Besides the ones that come with this book, we offer some free themes in our
Theme Clubhouse http://digwp.com/u/384

• Smashing Magazine - http://digwp.com/u/22
You might need to use their search form, but they offer a number of nice high-
quality free themes.

http://digwp.com/u/20
http://digwp.com/u/21
http://digwp.com/
http://digwp.com/u/384
http://digwp.com/u/22

41

Places to buy premium themes

• ThemeForest - http://digwp.com/u/385

• WooThemes - http://digwp.com/u/386

• ElegantThemes - http://digwp.com/u/387

• WPBest - http://digwp.com/u/388

2.6.3 Previewing Themes
A lot of themes you find around the internet will be accompanied by a demo,
enabling you to see how the theme looks and works before you commit to
it. But even if the theme doesn’t have a demo, you can demo it yourself, on
your own blog. Upload it to your /wp-content/themes folder, and navigate to
the “Appearance” page of your Admin area. There, you find thumbnails and
descriptions of your site’s currently available themes. Locate the theme that you
would like to preview from among the crowd and click on its thumbnail. A popup
window will then show you what your site will look like when running that
particular theme. You can even click around and check things out without actually
activating it. Once you are satisfied and would like to use the theme, click on the
“Activate” link in the upper right-hand corner of the screen and you’re all set.

2.6.4 Key Things to Look For in a Theme
When choosing that perfect theme for your site, you want to focus on how it looks
and how it works. Does it rock your browser’s very existence? Does it deliver your
content on a silver platter for your visitors? Does it make you want to scream in
ecstasy and dance the jig? If so, then you know it’s the right theme for you. There
is no reason to settle for anything less than absolutely perfect, especially given
the vast menu of awesome themes available to you. If you find something close to
perfect that could use a little tweaking, remember that it is much easier to change
things like color and font size than the underlying structure and functionality.

That said, here are some key things to look for when searching for the ideal theme:

http://digwp.com/u/385
http://digwp.com/u/386
http://digwp.com/u/387
http://digwp.com/u/388

42

Navigation

Take a look at what the navigation is like on the theme. Then think about how
you picture the navigation working best on your site. Do categories need to be
prominently displayed? Are pages more important? Do you need a dropdown
menu system? Is there room for you to build your own navigation if needed? Does
it support the WordPress 3.0 menu system?

Theme options

Some themes come equipped with theme options, literally an extra area of settings
in the Admin area for customizing the theme. These options can range from
simple, like altering colors, to complex, like integrating social media into your
theme. Sometimes these theme options can be very compelling, so look around to
see if anything catches your eye.

Widget ready?

When developing a theme, a designer may establish certain areas as “widget-
ready.” A widget-ready section in your theme enables you to quickly and easily
customize its appearance and functionality. A commonly seen widget-ready area
is the theme’s sidebar. In a widget-enabled theme, there is a special place in the
Admin area where you can configure widgets without messing with any code. For
example, you can drop in a mini-calendar, a chat feature, or some administrative
links. Within the comfort of your Admin area, you can specify options and even
drag the widgets around to adjust the order in which they appear on your web
pages. If you can picture yourself benefitting from widgets, you should ensure that
your theme is widget-ready.

Extra functionality

When it comes to functionality, the sky is the limit when it comes to WordPress
themes. Some themes really go nuts with functionality that extends far beyond
WordPress. For example, a theme may be built to integrate a photo-sharing service
such as Flickr, a statistical application such as Google Analytics, or even a database
interface such as phpMyAdmin.

43

Frameworks

WordPress theme “frameworks” are ever-growing in popularity. These frameworks
can add a little extra to the learning curve of WordPress, but once you are
comfortable with one, they can greatly facilitate the theme-building process by
providing all of the core features and options generally used within the theme.
This isn’t the time or place to go into detail, but you may want to look into some of
the more popular frameworks:

• Thematic (free) http://digwp.com/u/392

• Hybrid (free, with optional paid support) http://digwp.com/u/393

• Thesis ($87) http://digwp.com/u/394

Comes with source files?

It is likely that, even if you find a theme that you really like, you’ll want to be
doing some customization. If that involves modifying the theme’s images, it’s really
nice if the theme includes the source files from which it was created. These could
be Photoshop/Fireworks files, vector resources, icons, full-resolution images, etc.

Linkage

Flickr:
http://digwp.com/u/389

Google Analytics:
http://digwp.com/u/390

phpMyAdmin:
http://digwp.com/u/391

Of course we hope that you develop the chops
to build your own themes, but in a pinch,

services like WPCoder are great for turning
designs into real themes.

http://wpcoder.com

Drama

There was much web drama
related to the Thesis theme
creator and the WordPress
creators regarding Thesis
being not licensed under the
same (required) licence as
WordPress is under (GPL).
Thankfully this is over and
Thesis is now GPL!

http://digwp.com/u/392
http://digwp.com/u/393
http://digwp.com/u/394
http://digwp.com/u/389
http://digwp.com/u/390
http://digwp.com/u/391
http://wpcoder.com

44

2.7.1 Getting Started with Plugins
Part of the genius and magic of WordPress is the plugin system. These plugins
extend and enhance what WordPress is able to do in very specific ways. Anyone
is able to write a plugin for WordPress, and even include it in the official plugin
library, otherwise known as the WordPress Plugin Repository http://digwp.com/u/396.
Let’s explore some essential information for getting started with plugins.

2.7.2 Installing and Activating Plugins
Among the WordPress files on your server, there is a special directory, /wp-content/
plugins/, that contains all of your site’s plugins. The tried-and-true method for
installing a plugin is to download it to your computer, and then upload it to your
server into the plugins directory. After that, the plugin will appear in the Admin
area on the Plugins page. By default, new plugins are inactive, so you will need to
manually activate them before they take any effect.

You can, at any time, deactivate a plugin in this same way. Do be aware, however,
that plugins have serious power. Any time you activate or deactivate a plugin, you
should do some thorough investigating of your site to make sure everything is
looking and functioning as expected.

Plugins can also be searched for and installed directly from the Admin area of your
site. Just go to Plugins > Add New. The plugins available here are exactly the same
as those available at the WordPress Plugin Repository. In order to take advantage

Jason Santa Maria

This idea of “art directing”
articles online has been
popularized by Jason. Check
out his blog for some jaw-
dropping examples of beautiful
art direction in blog posts.

http://digwp.com/u/242

His blog isn’t powered by
WordPress, but interestingly
enough, Jason designed both
the WordPress Admin area
and the WordPress.org website.

You can do your own art
direction of individual posts by
being able to add custom CSS
to specific posts. Check out:

http://digwp.com/u/464

To the right you can see two
plugins in the list, one active,

one inactive.

http://digwp.com/u/396
http://digwp.com/u/242

45

of this direct web installation, your plugins directory must be “writeable” by
the server. In a perfect world, giving write permissions to a directory would
be absolutely safe, but in the hostile environment of today’s Web, you should
definitely consider carefully whether or not such permission is truly necessary.

The bonus of downloading plugins from the WordPress.org directory is that
you can be sure that the plugin isn’t malicious in any way. There are certainly
ways you can get yourself into trouble with plugins, but plugins obtained from
the Repository are unlikely to damage your site or harass your visitors. There
are plugins “out in the wild” available for download as well, but there are no
guarantees as to what you will get, so be very conscious of the source when
installing such plugins.

2.7.3 Difference Between Disabling and Uninstalling
Disabling a once-active plugin prevents it from functioning, but does not physically
remove the plugin from your plugins directory. You could have a thousand
disabled plugins doing nothing except for taking up space in your plugin folder. By
actually uninstalling a plugin, you remove all files associated with it, and if possible
also reverse any changes that the plugin might have made to the database.

In the process of installation and operation, many plugins will automatically insert
content into your WordPress database. Such plugins may add new tables or fields,
modify existing data, and store information required for usage. Once made, these
types of changes will persist even after the actual plugin files are deleted from
your server.

Well-built plugins will provide a complete uninstall option that does the work
of cleaning up its database changes for you. Plugins that do not provide such
convenience must be cleaned up manually. If this is the case for a plugin that you
would like to completely uninstall, make sure that you really know what you are
doing before making any changes to your database. And don’t forget to make a
backup just in case something goes awry.

File Permissions

Refer to Chapter 9.1.3 to
learn more about setting secure
file permissions for WordPress.

Function Exists?

When you deactivate a plugin,
you run the risk of a PHP
function being present in
your theme that doesn't exist.
Essentially a disaster that
will surely wreck your theme.
Before calling plugin-specific
functions in your theme, use a
conditional to ensure it exists:

<?php
 if (function_
exists('get_poll') {
get_poll();
 }
?>

46

2.7.4 Recommended Plugins
The nature of plugins is that they provide WordPress with supplemental
functionality that may not be needed by every site. Rather than try to squeeze a
million features into the WordPress core, application-specific functionality is left
to the awesome developers within the thriving WordPress community. Developers
see a need (or an opportunity), create a plugin, and release it to users. If the plugin
is popular enough, and makes sense to integrate into the WordPress core, the
wizards behind the curtain will see that it happens.

Even so, there remain a number of top-notch plugins that, for whatever reason,
have yet to be swallowed up by the core. Here are some of the best that we find
useful for virtually any type of WordPress-powered site:

Google XML Sitemaps http://digwp.com/u/23

This plugin will create a Google-compliant XML-Sitemap of your WordPress blog. It
supports all of the WordPress-generated pages as well as custom ones. Every time
you edit or create a post, your sitemap is updated and all major search engines that
support the sitemap protocol, like Google, MSN/Bing, Yahoo! and Ask.com, are
notified about the update. This is a super easy activate-it-and-forget-it plugin that
can help you by making sure search engines find every last corner of your site.

VaultPress http://vaultpress.com

VaultPress is a plugin and a paid service from Automattic, the creators of
WordPress. Once set up, your entire blog is backed up to "the cloud" including all
files on the server (WordPress itself, themes, plugins, images, etc) and the database.
They have a Premium level which includes scanning all those files for possible
security issues.

http://digwp.com/u/23
http://digwp.com/u/27

47

Art Direction http://digwp.com/u/24

This plugin allows you to insert extra
code (typically CSS or JavaScript,
but could be anything) into specific
Posts/Pages. The custom code can be
inserted anywhere the Post appears,
or only when viewing that Post
alone (single view) Who says every
one of your Posts has to have the
same styling? Nobody, that’s who.
Does every article in a magazine look exactly the same? No, not only because that
would be boring but because each article is unique and should be designed as such.
Having complete stylistic and functional control over every Post and Page of your
site is very powerful and opens up some awesome design possibilities.

Database Manager http://digwp.com/u/125.

Robust database management from within the WordPress Admin area. Database
Manager makes it easy to backup, optimize, repair, and perform many other
administrative tasks with your database.

FeedBurner FeedSmith http://digwp.com/u/26

The point of using FeedBurner is to get some statistics on how many people
subscribe to your site. But what point are statistics unless they are accurate? This
plugin will redirect anyone trying to access your WordPress feed directly to your
FeedBurner feed address. Set-it-and-forget-it.

W3 Total Cache http://digwp.com/u/424

Boosts the performance of your site (i.e., how fast your page loads) by combining a
variety of techniques: file caching, database query caching, minifying/compressing/
combining files, CDN integration, and more.

FeedBurner

Refer to Chapter 6.4.1 to
learn more about setting up
and using FeedBurner to
deliver your feeds.

CDN?

"CDN" stands for Content
Delivery Network. These are
services which serve up files
faster than a typical web
server can, and typically used
in conjunction with a main
webserver to speed up how
fast a page loads. An example
would be Amazon S3:

http://digwp.com/u/425

http://digwp.com/u/24
http://digwp.com/u/125
http://digwp.com/u/26

48

WP-DBManager http://digwp.com/u/111

There is nothing more important and vital to your WordPress-powered site
than the mysterious database that lives on your server. If your entire server was
destroyed, but you had a recent backup of your database, you would be OK.
Among other useful features like on-demand backups and database optimization,
you can have this plugin email you your database at set intervals.

Posts Per Page http://digwp.com/u/112

There is only one setting in WordPress to display how many Posts to show on a
page (located under Settings > Reading). But what if it made sense to display only
one post at a time on your blog’s homepage? That would mean that your search
page would also display only one post, which is dumb. This plugin allows you more
fine-grained control over how many Posts are displayed for each type of page,
including search pages, category pages, archive pages, and everything else.

Post Editor Buttons http://digwp.com/u/113

There is a user-setting for turning off the visual editor. When you do that, instead
of the rich-text editor you see when creating posts, you just get a few buttons and
see the raw HTML in the content box. The full control over formatting that this
editing mode provides is nice, but the buttons you get are fairly limited.

The good news is that the Post Editor Buttons plugin allows you to create your
own buttons on the fly, which potentially could be useful for any type of site.
Below, we see a number of custom buttons added: “h3,” “h4,” as well as buttons
such as “html,” which wraps the selected text in their respective tags.

IntenseDebate

Automattic has purchased one
of these services that attempt
to give a single home to all
your commenting activity:
IntenseDebate.com In theory,
it’s great, but in practice it
hasn’t quite lived up yet. ID
also has fierce competition from
competitor Disqus.com

http://digwp.com/u/111
http://digwp.com/u/112
http://digwp.com/u/113

49

Deactivation

The previous version of this
book berated the All in One
SEO Pack for one particular
trait: it auto-deactivates itself
when new versions come out.

Turns out there is a reason for
this, as plugin author Michael
Torbert explains:

http://digwp.com/u/423

All in One SEO Pack http://digwp.com/u/29

The #1 selling point of the All-in-One SEO Pack is that it automatically generates an
appropriate meta description tag for each Posts and Pages based on their content.
These automatically generated meta descriptions control what shows up as the
descriptive text in the search-engine results.

As you can imagine, these descriptions are greatly important because they
help users decide which link to click. In addition to providing this automated
functionality, the AiOSEO Pack also enables you to override the default settings
and individually control the meta description, post title, and keywords for every
Post and Page on your site. As if that weren’t enough, this plugin also takes care
of some duplicate content issues by automatically formatting your page titles and
implementing meta-tag canonicalization. An alternative to AiOSEO is Headspace 2:
http://digwp.com/u/126.

Clean Notifications http://digwp.com/u/25

The default comment notification email from WordPress is kind
of fugly. It’s plain text, and contains a whole bunch of links.
Thankfully, the Clean Notifications plugin utilizes some very
basic HTML to help the emails look much more readable and
user-friendly (see screenshot at right).

What’s next?

Now that we have WordPress installed, configured, set up,
plugged in and ready to go, it’s time to dig into the heart of
your WordPress-powered site: the theme.

http://digwp.com/u/29
http://digwp.com/u/126
http://digwp.com/u/25

50

Life is conversational. Web design

should be the same way. On the web,

you’re talking to someone you’ve

probably never met - so it’s important

to be clear and precise. Thus, well

structured navigation and content

organization goes hand in hand with

having a good conversation.

– C H I K E Z I E E J I A S I

3.1.1 Understanding Theme Files
It is time for us to start taking a close look at how themes are built and how they
work. If you have ever themed any kind of application before, you will appreciate
how straightforward and intuitive WordPress theming actually is (with plenty of
power when you need it). If you have never themed any application before, never
fear, it’s easy.

3.1.2 Every Theme is Different
Of course, the look of all themes is different. But if you were to download five
different WordPress themes and open the folders side by side, you’ll see a slightly
different sets of files as well. There are a couple of required files and a number

3 Anatomy of a WordPress Theme

51

Brand Your Theme
1 2Create a file named screenshot.png and put it in your themes folder. Put this info at the top of your style.css file

/*
Theme Name: Theme Name
Theme URI: http://your-website.com/cool-theme/
Description: Totally awesome WordPress theme by
Yours Truly
Version: 1 (WP2.8.4)
Author: Your Name
Author URI: http://your-website.com/
Tags: super, awesome, cool, sweet, potato nuggets
*/300px

22
5p

x

52

404.php Error page, served up when someone goes to a URL on your site that doesn’t exist

archive.php Page that displays posts in one particular day, month, year, category, tag, or author

archives.php Page template that includes search form, category list, and monthly archives (requires page using it)

comments-popup.php If you enable popup comments (obscure function), the comments link will use this template

comments.php This file delivers all the comments, pingbacks, trackbacks, and the comment form when called

footer.php Included at the bottom of every page. Closes off all sections. (Copyright, analytics, etc)

functions.php File to include special behavior for your theme.

header.php Included at the top of every page. (DOCTYPE, head section, navigation, etc)

image.php If you wish to have unique pages for each of the images on your site (for credits, copyright…)

images FOLDER - Keeps all the images that make up your theme in one place

index.php This is typically the “homepage” of your blog, but also the default should any other views be missing

links.php Special page template for a home for your blogroll

page.php Template for Pages, the WordPress version of static-style/non-blog content

rtl.css A special CSS file for your optional inclusion to accommodate “right to left” languages

screenshot.png This is the image thumbnail of your theme, for help distinguishing it in the Appearance picker

search.php The search results page template

sidebar.php Included on pages where/when/if you want a sidebar

single.php This file is displays a single Post in full (the Posts permalink), typically with comments

style.css The styling information for your theme, required for your theme to work, even if you don’t use it

STANDARD
(used in most themes)

CORE
(required)

JUNK
(legacy, don’t use)

SPECIAL
(optional additions)

Commonly Used WordPress Theme Files

53

of files you will likely find in all themes, but beyond that the door is pretty wide
open. For example, some themes might come with a special archives page because
that theme is built to showcase archives in a unique way. Another theme might be
missing a search.php file, because its index page is built to accommodate search
right inside of it.

3.1.3 Commonly Used Theme Files
In the adjacent table, notice how we have labeled each of the theme files. Two
of them, index.php and style.css are CORE. This means that they are absolutely
essential to your theme. In fact, WordPress will not recognize any theme if these
two files are not within the theme folder. Technically, you could build a theme with
only these two files. And a simple theme it would be! That might be just what you
need for some special applications of WordPress, but in general, you are probably
using WordPress because you want a bit more functionality than that would offer.

Most themes will include both the CORE files and all the files labeled STANDARD as
well. The STANDARD files cover everything both you and your visitors will expect
from a blog. Things like permalinked posts and pages, error catching, commenting,
and organized archives.

Some of these files are marked as SPECIAL, in that they offer something above
and beyond the basics. For example, the image.php file. If you choose to use the
WordPress default media library to manage the files you post to your site (images,
movies, etc.), you can insert them into your posts with a link to a special page on
your site controlled by the image.php file. This can be useful. You can include special
information on this page like copyright information, author information, usage
rights, etc. Stuff that you might not want to include everywhere the image itself is
used. Not all sites would want or need this, hence its designation as SPECIAL.

A few of the files are marked as JUNK, as they are just old deprecated crap that
nobody uses anymore. The comments-popup.php file is just weird; we could tell you
all about it, but it’s not worth the ink (really).

Not a full list

The chart on the opposite page
isn't a full list of all template
files, just common ones. See
page 57 for more. You are also
free to create as many of your
own custom theme files in here
as you like, that can act as
page templates.

54

3.1.4 How Theme Files Work Together
These files are not stand-alone templates. They interact and call upon each other
to get the job done. For example, index.php alone will call and insert header.php at
the top of it, sidebar.php in the middle of it, and footer.php at the bottom of it.
Then, the sidebar.php file might have a function to call in searchform.php. Likewise,
the header.php file, which includes the <head> section, will call upon the
style.css file.

It is this modular, dynamic approach that gives WordPress theme building a lot of
its power. For those folks coming from a background of building static sites, the
nature of using templates is probably already quite appealing. Imagine wanting
to add a navigational item to the site’s main menu bar, which likely lives in the
header.php file. One change, and the new navigational item is reflected on all
pages of the site. Going further, the menu bar itself is likely generated from a
built-in WordPress function. As soon as you publish a new page from the Admin
area of WordPress, the menu-bar function will recognize the new page and
automatically append it to the sitewide menu bar. This is powerful stuff that makes
site modifications, updates, and management very easy.

3.2.1 Understanding Different Page Views
There are really only a handful of different types of page views:

• The Home Page - usually at the root URL of your domain

• Single Posts - displays one post at a time, usually in its entirety

• Static Pages - pages that are outside the flow of normal posts

• Custom Pages - static pages that have been customized

• Search Results - displays a list or summary of posts matching a search

• Archive - shows series of posts for categories, tags, dates, and authors

55

3.2.2 Page Views are for Pages
We already learned about Pages and how they are most commonly used for
“static” style content. You cannot categorize or tag a Page, they exist outside the
chronological flow of posts, and they don’t appear in the RSS feed like Posts do.
As such, the theme template used to display Pages is generally different than that
used to display Posts. For example, it may lack the functionality to display things
such as dates, author names, and comments. Instead, it might include functionality
to display the breadcrumb trail of its hierarchy of parent pages (see Chapter 5.5.8).

3.2.3 Single Views are for Posts
The single.php file is responsible for displaying a single Post. There may be parts
of the single.php template file for displaying categorization and other “meta”
information about the post, as well as the functionality required for displaying the
comments area and comment form. Perhaps you want your single posts to be a bit
wider and less cluttered? The single.php file is where you might omit calling the
sidebar and adjust your CSS accordingly.

PAGE

Regular Title

No comments
This content isn’t really

meant for public discussion.

Unique sidebars
The sidebar needs on
this page are different
than elsewhere on the
site. WordPress can
accommodate.

Nav Highlighting
About page = About
highlighted in navigation

POST

Extra Blog Header
Blog posts have “blog”

header in addition to title
and meta about this post.

Comments
This content is meant for

public discussion. (not visible
in screenshot, but there!)

Unique sidebars
Blog area has blog-related

ancillary content, like
categories, subscription info,

and popular content.

Nav Highlighting
Any blog page = Blog

highlighted in navigation

56

3.2.4 The Many Faces of
Archive Views
There are many types of archives, and this
one file, archive.php, is often in charge
of displaying them all. When viewing a
particular category, tag, author, or date-
based archive, WordPress will generate the
markup and display the content according
to the code contained in the
archive.php file.

Look at all the archive links at the
Digging Into WordPress site. Every

one of those subsequent pages is
handled by the archive.php file

3.2.5 How WordPress Decides Which File
to Use for Rendering the View
All this talk about different page views is begging the question, “how does
WordPress figure out which template file to use?” You might assume that it is
hard-wired into WordPress, but as we’ve learned, most of the files in a theme
are optional. If your theme doesn’t have an archive.php file, does WordPress just
display a blank page? Absolutely not, it moves down its hierarchy of template files
to find the next most appropriate file to use. Ultimately, all paths in the WordPress
templating world end at the index.php file. No wonder this is such an important
and required file!

Just as we move down the hierarchy toward index.php, we can travel in the other
direction and create template files that are very specific. For example, if we wish
to have a unique template when viewing category #456 of our blog, we can create
a file called category-456.php, and WordPress will automatically use it. Let’s take a
look at the hierarchy flowchart.

57

58

3.3.1 Kicking It Off with the Header
If you had never seen the files in a WordPress theme before, you could probably
guess which file is responsible for the top of pages. It’s everybody’s favorite theme
file: header.php!

3.3.2 The DOCTYPE and HTML Attributes
In 99.999% of all themes, the header file is the first file that is called when
WordPress is rendering any type of web page. As such, its contents begin with
the same code that all web pages begin with, namely, the DOCTYPE. This isn’t the
time or place to talk about why to chose one DOCTYPE over another (there are
plenty available to choose from), but suffice it to say that XHTML 1.0 Strict is a very
common DOCTYPE choice these days. Here’s how it looks in the source code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Directly after any site’s DOCTYPE element is the opening HTML tag, which has a
number of attributes that work with the DOCTYPE to prepare the browser for
what to expect from the source code. Two commonly seen attributes for the <html>
tag include language attributes and XML namespace declarations. At this point,
WordPress jumps in to help define the page’s language attributes:

<html xmlns="http://www.w3.org/1999/xhtml" <?php language_attributes(); ?>>

At the time of the writing of this book, HTML 5 is really starting to get popular.
The DOCTYPE for this upcoming version of HTML is deliciously simple:

<!DOCTYPE html>

It just doesn’t get much better than that. Needless to say, we’re looking forward to
the day when HTML 5 is completely implemented.

59

3.3.3 META Elements
After the opening <html> tag, we move into the <head>, which is also common to
all web pages and provides all sorts of information the browser needs to display
the page as intended. Within the <head> section, we begin with some choice <meta>
tags, which can be thought of as “information about information.” In this case, the
HTML is the information, and so meta tags describe that information. To let the
browser know the content type and language used, WordPress helps us with some
super-handy template tags:

<meta http-equiv="Content-Type" content="<?php bloginfo('html_type'); ?>;
 charset=<?php bloginfo('charset'); ?>" />

<meta charset="<?php bloginfo('charset'); ?>">

Other important meta tags include “description” (very important) and “keywords”
(less important). But because the description and keywords for any given page
on your site depend on the actual content of that page, it is best to dynamically
generate these tags rather than include them directly here. See page 49 for the All-
In-One SEO plugin which handles this for you.

3.3.4 The Title
The <head> is also where the <title> for the page is declared, which is an incredibly
important line in any HTML code. It is literally what is shown at the top of the
browser window, what is saved as the default title of bookmarks (both saving
locally and socially), and is used for the title link in search-engine listings. Again,
we are in the tough position where this bit of code is written only once, right here,
and is used for every single page on the entire site. So how do you craft it so that
the title is optimal on every possible page? Glad you asked.

Here is an excellent function that enables top-notch, attractive-looking and
descriptive titles for every possible type of web page. Simply use this code as the
<title> element in your theme’s header.php file and you’re good to go:

Simplified HTML5

The bottom example is the
simplified HTML5 version of
declaring a character set.

60

<title>
 <?php if (function_exists('is_tag') && is_tag()) {
 single_tag_title('Tag Archive for "'); echo '" - ';
 } elseif (is_archive()) {
 wp_title(''); echo ' Archive - ';
 } elseif (is_search()) {
 echo 'Search for "'.wp_specialchars($s).'" - ';
 } elseif (!(is_404()) && (is_single()) || (is_page())) {
 wp_title(''); echo ' - ';
 } elseif (is_404()) {
 echo 'Not Found - ';
 }
 if (is_home()) {
 bloginfo('name'); echo ' - '; bloginfo('description');
 } else {
 bloginfo('name');
 }
 if ($paged > 1) {
 echo ' - page '. $paged;
 } ?>

</title>

Those sure would bookmark
nicely, wouldn't they?

Perfect Title Tags

For the full scoop on creating
perfect title tags for your
WordPress-powered site, check
out these two articles:

http://digwp.com/u/397
http://digwp.com/u/398

http://digwp.com/u/397
http://digwp.com/u/398

61

The All-In-One SEO Plugin that we mentioned earlier can also be put in charge of
handling page titles. The advantage is that it keeps this area of the theme cleaner
and does provide what is generally considered the best page title format for SEO.
The disadvantage being that it isn’t very customizable or nearly as configurable as
doing it yourself.

3.3.5 Link Elements
The <head> is also the place to link to external resources like CSS and JavaScript
files. Since your theme requires the presence of a style.css file in the root
directory of your theme, you might as well use it. Including it is as simple as this:

<link rel='stylesheet' href='<?php bloginfo("stylesheet_url"); ?>'
 type='text/css' media='screen' />

The parameterized function, bloginfo("stylesheet_url"), literally returns the
exact URL of the stylesheet. No reason to hard-code anything here. And in fact, the
bloginfo() function can return all sorts of useful information, which we’ll dig
into shortly.

On the other hand, including JavaScript files in your theme is slightly trickier,
especially if you want to do it the right way (you do). Let’s say you want to include
the popular JavaScript library jQuery on your page, and also a custom script of your
own that makes use of jQuery. Because jQuery is such a popular library, it is used
fairly commonly by other plugins, and in fact by the WordPress Admin area itself.
As such, WordPress literally ships with a copy of jQuery you can link to. To do so,
simply call this function in your head area or functions.php file:

<?php wp_enqueue_script('jquery'); ?>

Doing it this way has a few distinct advantages.

1. It’s easy. It creates a link to a file you know is there and you know works.

2. It lets WordPress know that the requested file is successfully loaded.

Parameterized is a fun word,
isn’t it?

62

If you go off and download your own copy of jQuery and link to that, WordPress
has no idea that you’ve done this. Then if you start using a plugin that utilizes
jQuery, it will go off and load another copy, which will cause all sorts of havoc.
Conversely, if you enqueue the file instead, the plugin will recognize the fact it
already exists and not load a duplicate copy. Hurrah!

On the other hand, when you load your own script, you don’t really need to
enqueue it because it is already totally unique and not included in WordPress. You
can load your own script on the page like this:

<script type="text/javascript"
 src="<?php bloginfo('template_url'); ?>/js/myscript.js"></script>

As you can see, we are using another bloginfo function here, only this time it
outputs the URL path to the active theme directory, not to any particular file.

Now, let’s say on your archives pages that you have a whole bunch of special CSS
that isn’t used anywhere else on the site and a custom script that is unique to your
archives pages. You can use some special WordPress logic to detect if the archives
pages are the ones being viewed, and load the files only in that situation:

<?php if (is_page_template('page-archives.php')) { ?>

 <link rel="stylesheet" href="<?php bloginfo('template_url'); ?>/css/
archives.css" type="text/css" media="screen" />

 <script type="text/javascript" src="<?php bloginfo('template_url'); ?>/
js/archives.js"></script>

<?php } ?>

That will take effect if you are using a special page template for your archives that
is literally named “page-archives.php”. If instead you happen to know the ID of the
page (available in the Admin area, see note on next page), that could be written
like this:

The One, the Only…

jQuery

http://jquery.com/

http://jquery.com/

63

<?php if (is_page("5")) { ?>

 <link rel="stylesheet" href="<?php bloginfo('template_url'); ?>/css/
archives.css" type="text/css" media="screen" />

 <script type="text/javascript" src="<?php bloginfo('template_url'); ?>/
js/archives.js"></script>

<?php } ?>

…where “5” in the first line is the page ID. Feel free to use PHP’s “or” operators
here to cover multiple pages.

Putting all of that together, our code looks something like this:

<?php wp_enqueue_script('jquery'); ?>

<?php wp_head(); ?>

<script type="text/javascript" src="<?php bloginfo('template_url'); ?>/js/
myscript.js"></script>

<?php if (is_page("5")) { ?>

 <link rel="stylesheet" href="<?php bloginfo('template_url'); ?>/css/
archives.css" type="text/css" media="screen" />

 <script type="text/javascript" src="<?php bloginfo('template_url'); ?>/
js/archives.js"></script>

<?php } ?>

Hey! What’s up with that wp_head() thing? Glad you asked…

What is My Page ID?

Determining the ID of your
posts and pages is not as easy
as it used to be. In previous
versions of WordPress, the ID
was conveniently displayed
right next to the post or page in
the Admin area.

In newer versions of
WordPress, ID information
has been removed, and is only
accessible by hovering over the
post/page link in the Admin’s
Edit Posts or Edit Pages
screens.

Thus, to get your ID, hover
over its link in the Admin and
look at your browser’s Status
Bar to see the information. It
will be appended to the URL
as the last parameter value.

64

3.3.6 The wp_head() Function
A must for any theme, the wp_head() function simply tells WordPress “Right here,
this is inside the <head>.” It is kind of a generic function that is used as a “hook” on
which the WordPress core, plugins, and custom functions may attach things.

For example, if you have the XML-RPC functionality of your blog enabled (Settings
> Writing), it requires a special <link> element to be added into the <head>. If it
is present within your theme, the wp_head function will be used by WordPress to
include the required XML-RPC element to the <head>.

Similarly, in the previous section, the code uses the wp_enqueue_script function. All
by itself, that function doesn’t have any effect. But when the wp_head tag is also
present, it serves as a hook that serves as the location at which the wp_enqueue_
script function will load the script.

Plugins also use the wp_head function to load their own scripts and CSS files.
Sometimes they even insert inline CSS and JavaScript, which is a bit annoying and
makes for a messy “View Source” experience.

3.3.7 Template Tags
Now is a good time to mention that there is a WordPress function for pulling out a
variety of information about your blog. This information is useful on a regular basis
when creating themes. Here is the function…

<?php bloginfo('template_url'); ?>

…and here is the different types of data that you can get from it:

 admin_email = jeff@digwp.com
 atom_url = http://digwp.com/home/feed/atom
 charset = UTF-8
 comments_atom_url = http://digwp.com/home/comments/feed/atom

65

 comments_rss2_url = http://digwp.com/home/comments/feed
 description = Take Your WordPress Skills to the Next Level!
 url = http://digwp.com/home
 html_type = text/html
 language = en-US
 name = Digging into WordPress
 pingback_url = http://example/home/wp/xmlrpc.php
 rdf_url = http://digwp.com/home/feed/rdf
 rss2_url = http://digwp.com/home/feed
 rss_url = http://digwp.com/home/feed/rss
 siteurl = http://digwp.com/home
 stylesheet_directory = http://digwp.com/home/wp/wp-content/themes/largo
 stylesheet_url = http://digwp.com/home/wp/wp-content/themes/largo/style.css
 template_directory = http://digwp.com/home/wp/wp-content/themes/largo
 template_url = http://digwp.com/home/wp/wp-content/themes/largo
 text_direction = ltr
 version = 2.8.5
 wpurl = http://digwp.com/home/wp

If you were looking closely, you may have noticed we have already used this
function earlier in our example showing how to include a stylesheet:

<link rel="stylesheet" href="<?php bloginfo('template_url'); ?>/css/
archives.css" type="text/css" media="screen" />

This is how you can generate a URL from inside your theme folder without
having to hard-code anything or worry about relative file paths. Hard-coding is
problematic (what if you change the name of the theme?). Relative file paths are
problematic too, because the URL structure of a site can change and go many levels
deep, the only reliable way to do it is to start with the root (“/”), which would
then require the theme’s folder name anyway.

66

Global Custom Fields
Another way to look at the bloginfo() function (see 3.3.7) is as a “Global Custom Field.” That is,
a value that you can access from anywhere that returns a value you can use. Posts and Pages can
have custom fields as well, but they are localized to that Post or Page and thus not very “Global.”
Creating your own global custom fields could potentially be very useful. For example, let’s say you
use the Amazon Affiliate Program to help your site earn money. This affiliate code is baked into all
sorts of data that you can get from Amazon, like URLs for linking to products and their widgets. As
with everything, you could hard-code this affiliate code everywhere it needs to be, but that isn’t
a very efficient technique. If this code were to change some day (you never know), you are stuck
updating a lot of code. Instead, let’s do it right by literally creating a custom settings area in the
Admin for creating our own global custom fields.

Add this to your functions.php file:

<?php add_action('admin_menu', 'add_gcf_interface');

function add_gcf_interface() {
 add_options_page('Global Custom Fields', 'Global Custom Fields', '8', 'functions',
 'editglobalcustomfields');
}

function editglobalcustomfields() { ?>
 <div class="wrap">
 <h2>Global Custom Fields</h2>
 <form method="post" action="options.php">
 <?php wp_nonce_field('update-options') ?>
 <p>Amazon ID:

 <input type="text" name="amazonid" size="45"
 value="<?php echo get_option('amazonid'); ?>" />
 </p>
 <p><input type="submit" name="Submit" value="Update Options" /></p>
 <input type="hidden" name="action" value="update" />
 <input type="hidden" name="page_options" value="amazonid" />
 </form>
 </div>
<?php } ?>

You can now display this value anywhere in your theme with the get_option() template tag:

<?php echo get_option('amazonid'); ?>

67

3.4.1 The WordPress Loop
The loop is the one thing that is absolutely core to understanding how WordPress
works. In its most basic, generalized form, the loop looks like this:

<?php

// The Loop

if (have_posts()) : while (have_posts()) : the_post();

...

endwhile; else:

...

endif;

?>

As veteran developers know, a “while” loop is a standard concept in any
programming language, and its use here is just standard PHP. First the loop makes
sure that there are some posts to display (the “if” statement). If that is true, it
begins the loop. Then, the function “the_post()” sets the stage for WordPress to
use inner-loop functions, which we will explore soon. Once the_post() has been
iterated the specified number of times, “have_posts()” turns to false and the loop
stops.

Yikes! That is sounding pretty abstract. Perhaps we better break things down so we
don’t lose each other.

Bad analogy!
Bad analogy!

68

3.4.2 The Loop in Plain English
<?php if (have_posts()) : ?>

 <?php while (have_posts()) : the_post(); ?>

 <div class="post" id="post-<?php the_ID(); ?>">

 <h2><a href="<?php the_permalink(); ?>"
rel="bookmark" title="Permanent Link to <?php the_
title_attribute(); ?>"><?php the_title(); ?></h2>

 <?php echo get_post_meta($post->ID, 'PostThumb',
 true); ?>

 <p class="meta">

 Posted on <?php the_time('F jS,
 Y'); ?> by <?php the_author(); ?>

 </p>

 <?php the_content('Read Full Article'); ?>

 <p><?php the_tags('Tags: ', ', ', '
'); ?>
 Posted in <?php the_category(', '); ?>
 <?php comments_popup_link('No Comments;',
 '1 Comment', '% Comments'); ?></p>

 </div>

 <?php endwhile; ?>

 <?php next_posts_link('Older Entries'); ?>

 <?php previous_posts_link('Newer Entries'); ?>

<?php else : ?>

 <h2>Nothing Found</h2>

<?php endif; ?>

Are there any posts published? Sorry, just had to ask, the
rest of this code will go funky if there aren’t any.

Begin the loop. This will cycle through the number of Posts
you have set to display (under Settings > Reading).

A header tag with an anchor link inside it. The text will be
the title of the Post, and the link will be the permalink to
the single Post page.

A custom field that is attached to this Post is pulled out
and displayed. In this case, the key of “PostThumb”, which
returns an “” tag symbolizing this Post.

“Meta” information about the Post is displayed: the Month
Day, Year the Post was published and the display name of
the Author who wrote it.

The full content of the Post is displayed.

More meta information about the post is displayed: all the
tags and categories given to this Post and the number of
comments, which is a link to the commenting area.

End of the loop

If there are older or newer posts available, display links to
them.

No posts? (a failsafe)

Better tell the people.

All done.

69

3.4.3 The Loop Just Knows…
As mentioned, the loop is simply a dressed-up “while” loop. While there are posts
available in the database, display the posts. In theory, it’s simple and utilitarian.
But what might remain confusing is just how this while loops knows exactly what
to loop. While… what? Well, without you having to tell it, the basic loop function
already knows what its query is going to be! To see for yourself what the query
string is, you can echo it to the web page by adding this little snippet directly
before the loop:

<?php echo $query_string; ?>

If we were to place this snippet above our index.php loop at the Digging into
WordPress site, the following information would be displayed on the home page:

posts_per_page=5&what_to_show=posts&orderby=date&order=DESC

In plain English, that reads: “Show five Posts in descending date order.” Likewise,
if we echo that $query_string variable from our archive.php file, and then visit the
“JavaScript” category archive, we see this:

posts_per_page=10&what_to_show=posts&orderby=date&order=DESC&category_
name=javascript

In plain English: “Show ten Posts from the javascript category in descending
date order.”

Note that we did nothing manually to change this query string, but merely by
loading a different type of page (an archive view), WordPress provides the proper
query to make that loop do the right thing. Don’t worry if this sounds confusingly
technical. It doesn’t really matter. The point is that The Loop just knows what to
loop through for the type of page you are building and displaying.

loop.php

The TwentyTen theme that
comes with WordPress 3.0
cleverly includes a loop.php file,
which helps reduce repeative
code in other theme files.
Explore!

70

3.4.4 Some Common “Loop Only” Functions
While (get it?!) you are inside the loop, you have access to a number of functions
that aren’t available elsewhere. These are functions that return things specific to
individual posts. So it’s not that these functions are limited per se, but they just
wouldn’t make any sense otherwise. A great example:

<?php the_title(); ?>

This function displays the title of the current Post. Remember that we are in a loop,
so if that loop runs five times, this function will display five different items, namely,
the title for each of our five posts.

Here is a number of common and highly useful “inside-loop-only” functions:

• the_permalink() - displays the permalink URL for each post

• the_ID() - displays the ID of each post

• the_author() - displays the name of the author for each post

• the_category() - displays the category/categories to which each post belongs

While you are inside the loop, you also have access to a bunch of preset variables
that are populated after the_post() is executed. These variables exist in the object
$post. Much of this object data is used by functions that use it in more elaborate
ways, but the $post object provides “raw” data that is sometimes incredibly useful.

• $post->ID - returns the ID of post; useful for other functions that need an ID.

• $post->post_content - the actual post content, including all markup; useful
when you need to process the content of a post before outputting it.

• $post->post_modified - returns the datestamp of the last time the post was
updated.

• $post->post_name - returns the slug of the post.

In addition to these, there are many more. See http://digwp.com/u/399 for reference.

http://digwp.com/u/399

71

3.4.5 Some Common “Outside Loop” Functions
Some functions are built to return more global and/or generic information that
doesn’t have anything to do with any one particular Post. As such, they are meant
to be used in templates outside of the loop.

Here is a number of common and frequently used “outside-loop-only” functions:

• wp_list_pages() - displays a list of links to your static pages

• next_posts_link() - displays a link to older posts in archive views

• wp_tag_cloud() - displays a tag cloud of all your tags

• get_permalink() - returns the permalink of a post for use in PHP

Of course this is just a tiny sampling of all the functions available. The point we are
trying to drive home here is that some functions are dependent on being inside the
loop to function properly, and some do not.

3.5.1 Comments
Comments may be one of the reasons you are using WordPress to begin with. It
is a powerful system with lots of options and management possibilities. We are
going to go much more in-depth into comments in Chapter 7, but comments are
definitely part of the anatomy of a theme, so let’s get familiar now.

3.5.2 The comments.php File
In general, WordPress themes neatly compartmentalize the commenting
functionality into a single file, comments.php, which is responsible for the following:

• All the logic necessary for displaying the appropriate data

72

• Displaying all the current comments

• Displaying the comment form

To accomplish these things, the comments.php file requires a complex system of
logic. It goes something like this:

Is the post protected? (password required)
Yes - display message and stop
No - continue

Are there any comments?
Yes - display them and continue
No - don’t display anything and continue

Are comments open?
Yes - continue
No - display message and stop

Is registration required?
Yes - display message and stop
No - display comment form

And that is just the basic functional flow. Additional logic is used within the various
functions to accommodate different conditions and different settings. For example,
is the comment form being displayed in the default generic state, or is it an
existing comment that is being replied to?

<?php comment_form_title('Leave a Comment', 'Leave a Reply to %s'); ?>

3.5.3 Selective Inclusion for Different Views
The beauty of having all of this magic tucked away into a single file is that you can
add the complete commenting functionality to different page views (i.e., different
theme template files) with a single function:

<?php comments_template(); ?>

73

For example, your single.php file will likely have this function below the loop and
all the content stuff. Your page.php might be incredibly similar to your single.php
file, but may omit this function because you don’t wish to have commenting on
your static content. What if the day comes along though where you wish to include
comments on Pages? You can simply create a new page template and include the
comments_template() function. Easy.

So, do you need to create a new special page template for every little trivial
change like this? Well, no, you don’t have to. How about another common
example. Say you want some of your Pages to display your regular sidebar, and
hide it from some of your other Pages. Apart from this difference, all of your pages
will be exactly the same. You could create a special page template called something
like page-nosidebar.php and omit the <?php get_sidebar(); ?> template tag. But
that’s a lot of repeated code for such a trivial change.

A better approach is to use a custom field to designate if you want to have a
sidebar or not. Then in the template, look for that custom field and behave
accordingly. Here is how this could look in your index.php file:

<?php // conditional sidebar display

if (!get_post_meta($post->ID, "noSidebar", true)) {

 get_sidebar();

} ?>

You could use this exact same technique
for anything that you wish conditionally to
include or not include on a page template,
without having to create multiple templates.

The screencasts on CSS-Tricks
are Pages, not Posts. They
have their own special template
which, among other things,
includes user comments.

Screenshot showing how to set the
custom field for this example

74

3.6.1 The Sidebar
Sidebars are such ubiquitous design elements that special functionality is built right
into WordPress for handling them. In any of your theme files where you wish to
display a sidebar, simply place the following template tag where you would like it
to appear:

<?php get_sidebar(); ?>

That function will go get the file “sidebar.php” and place its content where this
function was called. Working with multiple sidebars?

<?php get_sidebar('secondary'); ?>

That function will retrieve the file called “sidebar-
secondary.php” and load that.

Despite all this special functionality, sidebars are by
no means required. Don’t want one? Don’t need
one? No problem. Just don’t put a sidebar.php file in
your theme and don’t call the function.

3.6.2 Purpose and Placement
Sidebars are for “stuff.” Websites are full of stuff.
There is the main content, of course. Navigation,
sure. But then there is all kinds of other stuff. We
don’t want this stuff in the footer because that’s way
down there all lonely at the bottom of the page. So
we put it on the side instead. You know what I’m
talking about. Stuff = alternate navigation, ancillary
content, small forms, descriptive text, advertising,
blogrolls, pictures of cats… stuff.

Sometimes One,

Sometimes Two

The Fuel Network blogs have
two sidebars on the right of
their main content area when
viewing their homepage. When
viewing an individual post,
the “middle” sidebar is gone,
leaving a wider main
content area.

75

Yet despite all of the stuff they contain, sidebars are typically much narrower than
the main content area. Sidebars are generally placed to the left or right of the
main content (e.g., your posts), but may actually appear anywhere. It all depends
on the structure and styling of your theme.

3.6.3 Popular Sidebar Functions
The particular requirements for the site you are building should dictate what you
put in a sidebar. Just throwing that out there, because you should never make
design decisions based on something like, “this other blog I saw had a tag cloud
so my blog should have a tag cloud.” Your blog should have a tag cloud if you use
a lot of tags to classify your Posts and you think your audience will benefit from
being able to navigate your site in that way. That being said, there are a number of
popular functions that can be useful in the sidebar setting. Let’s take a look:

• List recent posts
Perhaps your homepage design displays only one Post at a time. Or perhaps it
lists several, but you want to give people access to the latest ten Posts. There
is a special function for displaying such a configuration. In typical WordPress
fashion, it is a custom function that accepts a number of parameters that can be
useful in lots of situations.

<?php wp_get_archives(array(
 'type' => 'postbypost', // or daily, weekly, monthly, yearly
 'limit' => 10, // maximum number shown
 'format' => 'html', // or select (dropdown), link, or custom
 'show_post_count' => false, // show number of posts per link
 'echo' => 1 // display results or return array

)); ?>

This will output a list of linked Post titles according to the specified parameters.
You can’t display excerpts or any other information from the Post, however; for
that you’d need to run a custom loop.

76

• Display a tag cloud
If you decide to tag the content on your blog, a “tag cloud” may be the ideal
way to offer users navigation of that particular taxonomy.

<?php wp_tag_cloud(array(

 'smallest' => 10, // size of least used tag

 'largest' => 18, // size of most used tag

 'unit' => 'px', // unit for sizing

 'orderby' => 'name', // alphabetical

 'order' => 'ASC', // starting at A

 'exclude' => 6 // ID of tag to exclude from list

)); ?>

These are just a few example parameters, see the Codex at http://digwp.com/u/30.

• List of categories
Categories can sometimes act as the main navigation for your site. Or, they can
be a secondary form of navigation to display in a sidebar. Either way, displaying
a list of them dynamically is pretty easy.

<?php wp_list_categories(array(

 'orderby' => 'name', // alphabetical

 'order' => 'ASC', // starting at A

 'show_count' => 0, // do NOT show # of posts per cat

 'title_li' => __('Categories'), // include title list item

 'exclude' => 12, // ID of category to exclude

 'depth' => 0 // levels deep to go down cat tree

)); ?>

These are just a few example parameters, see the Codex at http://digwp.com/u/31.

Example from:

http://webdesignerwall.com

http://digwp.com/u/30
http://digwp.com/u/31
http://webdesignerwall.com

77

• Show the blogroll
In the Admin area, there is an entire area just for “links” (located in the same
area with Posts and Pages). This area was once commonly referred to as the
“Blogroll” but that term has gone a bit out of fashion. Regardless of what it’s
called, the list of links managed in this area may be easily displayed with this:

<?php wp_list_bookmarks(array(

 'orderby' => 'name', // alphabetical

 'order' => 'ASC', // starting at A

 'limit' => -1, // unlimited, show ALL bookmarks

 'title_li' => __('Bookmarks'), // include list item title

 'title_before' => '<h2>', // tag before title

 'title_after' => '</h2>', // tag after title

)); ?>

These are just a few example parameters, see the Codex at http://digwp.com/u/32.

• Editable text area
One of the things you may wish to include in a
sidebar is an area of text that you can edit from
the back end. There are a couple of different ways
to do this. One way would be to use a “global
custom field” (see page 66). Another way would
be to use widgets. Widgets are WordPress’ way
of allowing management of regions through the
Admin, rather than having to edit theme files. One
of the many different types of widgets is a generic
“text” widget. If you have a “widgetized” sidebar,
you can just drag this over into that area, enter
your info, and save it.

http://digwp.com/u/32

78

3.6.4 Widgets, Widgets, Widgets
“Widgetizing” a sidebar, or any other region for which you wish to have
manageable areas, is pretty easy. And because widgets are standardized, plugins
can make use of them and deliver special widgets that you can control directly
from within the Admin area. We’ll look more into widgetization in section 4.8.1,
but for now, this is the code that you would place into your theme file:

<div id="sidebar">

 <?php if (!function_exists('dynamic_sidebar') || !dynamic_sidebar()) : ?>

 <!-- stuff shown here in case no widgets active -->

 <?php endif; ?>

</div>

Now in your functions.php file, you “register” the sidebar with a custom function:

if (function_exists('register_sidebar')) {
 register_sidebar(array(
 'before_widget' => '<li id="%1$s" class="widget %2$s">',
 'after_widget' => '',
 'before_title' => '<h2 class="widgettitle">',
 'after_title' => '</h2>',
));

}

Now every widget you add will appear inside list tags with corresponding <h2>
headings, which should fit well into the surrounding markup. Each widget will also
have a unique ID and common class name (for potential CSS styling).

More Sidebar Ideas

For more great techniques and
ideas for crafting the perfect
sidebar, check out Section
4.4.1, “Side Content and
Useful Menu Items.”

79

3.7.1 The Search Form
WordPress provides built-in search functionality, and you should definitely share
it with your visitors. It is an expected feature of most websites, providing a useful
way for visitors to locate their favorite content.

3.7.2 Why is This a Separate File?
It is very common for a WordPress theme to have a file called searchform.php. This
is because the search form may be used in multiple theme files and in different
locations, so placing it in its own file helps to keep things modular. Just like the
sidebar, which you can include at your leisure with the get_sidebar() function, you
can include your searchform.php in any other template file by calling this function:

<?php get_search_form(); ?>

This function accepts no other parameters, but of course if you had a good reason
to rename searchform.php or keep it anywhere other than the root directory of
your theme, you could just use the standard include code instead:

<?php include(TEMPLATEPATH . '/inc/special-search-form.php'); ?>

Where might you use this?

• On the 404 page (404.php)

• In the “else” part of The Loop

• In the sidebar

3.7.3 Alternatives to WordPress Search
The fact of the matter is that the WordPress built-in search kind of sucks. It lists
things in chronological order based on whether or not it found any of your search

80

terms. When searching for your query, WordPress looks in the titles and content of
your posts and pages. If the search terms aren’t located there, WordPress will tell
you that nothing can be found.

To make things worse, there is no advanced search functionality, meaning you have
very little control as a user or as a theme developer as to how results are refined,
returned, and displayed. There are ways of hacking together a decent WordPress
search system, but it takes quite a bit of meddling.

A much easier way to improve the WordPress’ default search functionality is either
to replace it entirely with Google or install a plugin that will beef things up
for you.

Google Search http://digwp.com/u/53

As it happens, an alternative to WordPress search is to just use Google search
instead. Not just generic Google full-web search, but rather a free service called
the Google Custom Search Engine, with which you can integrate customized, site-
specific search engines into any site. It’s easy and super-awesome.

Search API Plugin http://digwp.com/u/54

This plugin provides a far more powerful searching system than the default
WordPress search. With the Search API plugin, you can search different types of
content, search within particular categories, use search operators like AND, OR, and
NOT, and even search using a more comprehensive “fulltext” MySQL search. As if
that weren’t cool enough, this plugin also integrates with Google Custom Search.

Search Everything

Instead of just looking
at post titles and content
to locate matching search
terms, wouldn’t it be neat if
WordPress searched through
everything in your database?

The Search Everything plugin
does exactly that, telling
WordPress to search through
comments, drafts, attachments,
and just about everything else.

http://digwp.com/u/400

Each of the different search choices on CSS-Tricks
activates a different Google Custom Search Engine.

http://digwp.com/u/53
http://digwp.com/u/54
http://digwp.com/u/400

81

3.8.1 The Footer
Just like headers and sidebars, footers are one of those ubiquitous design elements.
They are so commonly used that WordPress again has a special template tag for
including them into your theme:

<?php get_footer(); ?>

This function will accept only one parameter, a string, which works like the sidebar
function. Used without a parameter it will fetch the footer.php file and insert it.
When used with a parameter like so…

<?php get_footer("mini"); ?>

<?php get_footer("mega"); ?>

…the get_footer() template tag will retrieve the theme files “footer-mini.php” and
“footer-mega.php,” respectively.

3.8.2 The wp_footer() Hook
Remember the wp_head() hook? Well, the wp_footer() hook is exactly like that, only
used down in the footer instead. It tells WordPress, “the footer is right here.” All
by itself, it doesn’t do anything, it’s just a generic hook that can be used to which
scripts and other functionality may be attached.

For example, it is fairly common practice to load HTML-dependent JavaScript files
from within the footer instead of the header. The location of the wp_footer() hook
within your footer.php file will determine where the JavaScript is displayed in the
source code. Thus, a good place for this hook is just before the closing <body> tag.

 <?php wp_footer(); ?></body>

82

Mini footer

Mega footer

JeffCampana.com

Just a thin black bar with
a copyright and a small
illustration. Even that small
bit of text could be kept
dynamic:

© <?php
echo date("Y");
bloginfo('name'); ?>

YoDiv.com

Enormous section of content
displayed with a clever
“underground” design. This
could have been accomplished
any number of ways, but
probably most practically by
using the Links area in the
Admin and using the wp_
list_bookmarks to generate the
different categories of links.

83

3.8.3 Mini Footers / Mega Footers
Like your sidebar, the design of your footer should serve the needs of your site
and it’s audience. If you don’t need the room in your footer, no need to junk it up
with unnecessary stuff. At the same time you shouldn’t be afraid to do something
interesting or innovative if you have appropriate content and the desire to do so.

3.9.1 Theme Functions
WordPress themes can include a special file, functions.php, which gives you a lot
of control and power over things that happen in your theme. Think of it like a file
that can do anything a plugin can do, without needing a plugin. Neat eh? This
allows for a lot of cool theme functionality that was not possible in the days before
this file existed. The functions.php file is also beneficial for themes that need to be
“bundled” with certain plugins.

3.9.2 Functions are for Specific Themes
Because you can accomplish similar things with plugins as you can with custom
functions (i.e., the functions.php file), some rational decisions should be made
about where to do what.

Because the functions contained within the functions.php file reside within
the theme folder itself, the code inside it depends on that particular theme
being active in order to run. Plugins on the other hand, remain operational (or
inoperational, as the case may be) regardless of which theme is active. Thus, don’t
put anything in functions.php that is required by multiple themes. Likewise, don’t
do anything with a plugin that is only relevant to the current theme.

84

Examples:

Hide WordPress upgrade notification bar Use a plugin

Add button to Post Editor Use a plugin

Load jQuery from Google Use functions.php

Replace default Gravatar image Use functions.php

In the top two examples, the desired result is related to the Admin area and so has
nothing to do with the theme itself. You should use a plugin here, because they
are theme-independent and won’t stop working when you change themes.

In the bottom two examples, those two things are specific to a theme, and thus
should happen in the functions.php for that theme.

3.9.3 Advantage Over Core Hacks
In the dark days before functions.php, modifying and customizing WordPress
functionality was often a matter of altering “core” files. There are a number of
problems with this. First and foremost, you could break something in a pretty
substantial way and have no clear path to restored functionality. Equally as
important, upgrading WordPress means upgrading core files. As in, overwriting
them. You would lose your alteration entirely unless you documented exactly
what you did; and even then you would have to trudge through and manually
re-implement your changes with every new version of WordPress (and there are
plenty, trust us). As you do this, you will also need to account for any changes in
the core files and adapt your hack accordingly. A real pain in the keyboard, if you
know what we mean. The worst part of this nasty practice is that, after going
through a few upgrades, you will probably throw in the towel and stop upgrading

85

to new versions. This of course is bad because it leaves you open to potential
vulnerabilities and missing out on the latest and greatest cool features.

Fortunately hacking the WordPress core is rarely needed these days because there
are so many hooks available to latch onto and literally rewrite content or append
new functionality.

Up next…
Now that we are familiar with the anatomy and basic functionality of a WordPress
theme, let’s dig deeper into WordPress and learn as much as we can about theme
design and development. Strap yourself in, it’s going to be a wild ride!

It may not look like a typical
WordPress site, but it is! All
the quotes seen in this book are
from Quotes on Design.

http://quotesondesign.com

If You Must…

As bad a practice as it is to
hack the WordPress core,
there may be situations in
which doing so is the only
way to accomplish your goals
(WordPress isn’t all-powerful,
after all). If you find yourself
contemplating a little core
hacking, be sure to check out
Chapter 5.4.3 – Hacking the
WordPress Core – for some
helpful tips.

http://quotesondesign.com

86

My rates are as follows:

$50/hour

$75/hour if you watch

$100/hour if you help

– C L A S S I C A U T O B O D Y S I G N

4.1.1 Customizing the Loop
As we mentioned in the previous chapter, if there is one thing that you need to
understand to be a true badass theme developer, it is how the loop works and
what you can do with it. With this as our mantra, let’s spend the first part of this
chapter looking at how to do lots of different stuff with the Loop.

To set the stage, a customized loop is going to have this structure:

<?php

// The Query - Customize!

query_posts('showposts=5');

// The Loop

if (have_posts()) : while (have_posts()) : the_post();

...

endwhile; else:

...

endif;

// Reset Query

wp_reset_query();

?>

87

Theme Design and Development4

88

4.1.2 The Loop Doesn’t Care About Markup
It’s true. Here is a pretty “normal” loop:

<?php if (have_posts()) : while (have_posts()) : the_post(); ?>

 <div class="post" id="post-<?php the_ID(); ?>">

 <h2><a href="<?php the_permalink(); ?>" rel="bookmark"
title="Permanent Link to <?php the_title_attribute(); ?>"><?php the_
title(); ?></h2>

 <p class="meta">Posted on <?php the_time('F jS, Y'); ?></p>

 <?php the_content('Read More'); ?>

 <p><?php the_tags('Tags: ', ', ', '
'); ?> Posted in <?php
the_category(', '); ?> | <?php edit_post_link('Edit', '', ' | '); ?> <?php
comments_popup_link('No Comments »', '1 Comment »', '% Comments
»'); ?></p>

 </div>

<?php endwhile; ?>

<?php next_posts_link('« Older Entries') ?>

<?php previous_posts_link('Newer Entries »') ?>

<?php else : ?>

 <h2>No Posts Found</h2>

<?php endif; ?>

And here is the same exact loop, only marked up as a simple ordered list:

<?php if (have_posts()) : ?>

 <?php while (have_posts()) : the_post(); ?>

89

 <li id="post-<?php the_ID(); ?>">

 <a href="<?php the_permalink(); ?>" rel="bookmark"
title="Permanent Link to <?php the_title_attribute(); ?>"><?php the_
title(); ?>

 <?php the_content('Read More'); ?>

 <?php endwhile; ?>

<?php else : ?>

 <h2>No Posts Found</h2>

<?php endif; ?>

And here it is again as a definition list:

<?php if (have_posts()) : ?>

 <dl>

 <?php while (have_posts()) : the_post(); ?>

 <dt id="post-<?php the_ID(); ?>">

 <a href="<?php the_permalink(); ?>" rel="bookmark"
title="Permanent Link to <?php the_title_attribute(); ?>"><?php the_
title(); ?>

 </dt>

 <dd>

 <?php the_excerpt(); ?>

 </dd>

 <?php endwhile; ?>

 </dl>

90

 <?php next_posts_link('« Older Entries'); ?>

 <?php previous_posts_link('Newer Entries »'); ?>

 <?php else : ?>

 <h2>No Posts Found</h2>

<?php endif; ?>

Notice that not only is the markup different in each of these different examples,
but the functions we use are different as well. For example, the definition list
example uses the_excerpt() instead of the_content(), which only displays a small
portion of the entire content (assuming the main content of the Post is longer than
55 words, the default excerpt length). This might be more appropriate for, say, a
loop in the sidebar showing recent posts.

4.1.3 The Power of query_posts
 A lot of the magic ahead is accomplished by using the query_posts function,
which is definitely worth getting to know! To use it properly, you call it before
the beginning of the loop, and specify the parameters you need to customize the
perfect loop for your scenario.

As we learned in section 3.4.3, every execution of the loop is based on a default
query that changes according to the type of page being viewed, your settings, and
so on. This default query is not set in stone, however, and may be overridden or
modified by specifying your own query using the query_posts function.

In many cases, you might want to preserve the original query and adjust only
certain parts of it. To do so, simply call the function using the $query_string
variable and then append additional parameters to the query string, like so:

query_posts($query_string . '&showposts=6');

91

Let’s look through some more tasty “recipes” for common things you might want
to do with the loop.

4.1.4 Displaying Different Numbers of Posts
There is a global setting in the Admin area for setting the number of Posts to
display. On page 48, we talk about a plugin that allows more fine-grained control
for this setting, but you can also control it directly through the loop itself. For
example, here we are overriding the default number of posts to display:

query_posts($query_string . '&showposts=6');

4.1.5 Excluding Specific Categories
One of the most common customization requests for WordPress is, “how do I
prevent posts in a certain category from displaying on my home page?” Say you
have a category about hamsters that, for whatever reason, you want to omit from
the post loop on your home page. You still want hamsters content in your feeds,
just not on your website. How would we do something like this?

Although there are multiple ways to handle this request, the simplest solution is to
be found in… yep, you guessed it, the query_posts function:

query_posts($query_string . '&cat=-3');

In general, a dash (or minus sign, “-”) appearing before a parameter value signifies
exclusion. Thus, here we are excluding category number three, which happens to
be our hamsters category. When this code is placed before our loop, posts about
hamsters will not be displayed.

Other possible ways to exclude a category include using PHP’s “continue” function
to advance the loop prematurely, hiding content with CSS or JavaScript, hacking
the core, and using a plugin. Still, this method is the cleanest and most flexible.

Overriding Parameters

If the $query_string already
contains a parameter (e.g. year)
you can override it by passing
that parameter again after it.

NOT
…on the Home Page.

92

4.1.6 Changing the Sort Order
WordPress is sort of a LIFO application by default. That is, Last In First Out. It’s a
smart default, because most blog-like sites like to show off their newest content
first. This gives people a reason to return since they know the new stuff will be
displayed up front and center. However, that might not be the ideal configuration
for every site.

Say you were using WordPress to write and present a novel. You were writing it
and releasing it chronologically chapter by chapter. So when visitors came to your
site, you want to show them Chapter One, but that is actually your oldest post, so it
will be buried beneath the newer chapters. No problem, just reverse the sort order:

 query_posts('orderby=date&order=ASC');

4.1.7 Show Specific Pages, Embed a Page within a Page
Another interesting and useful loop trick is to use the query_posts function
to display only one specific Page. This could be useful for a variety of reasons,
including a situation where you needed to embed the contents of one Page within
another Page. Here is how to do it:

 <?php query_posts('pagename=about'); // retrieves the about page only ?>

4.1.8 Using Multiple Loops
There is nothing holding you to using only one loop. You can have as many loops
as you’d like! In fact, it’s fairly common to have multiple loops going in a theme. A
simple example would be a homepage that shows the full content of the newest
three posts. But then in the sidebar, there is second loop which shows the title and
date of the next seven posts after that. Nothing wrong with it, works just fine.

Let’s look at a more complex example. Let’s say we have some fancy four-column
theme. We have a left sidebar where we want to show a list of posts only from the

pagename=about

Note that the pagename value
used here refers to the actual
slug for the page. See Chapter
2.3.5 for help with slugs.

93

query_posts(array(
 'cat': 7,
 'posts_per_page': 3
));

Give me three posts
from category seven

query_posts(array(
 'cat': -7,
 'posts_per_page': 5
));

Give me five posts not from
category seven

query_posts(array(
 'cat': -7, 'offset': 5,
 'posts_per_page': 5
));

Five more posts not from
category seven (skip five)

query_posts(array(
 'cat': -7, 'offset': 10,
 'posts_per_page': 10
));

Ten more posts not from
category seven (skip ten)

1 - Left Sidebar 2 - Main Left 3 - Main Right 4 - Right Sidebar

“events” category. Then we have a main column, split into two, where we display
the ten most recent posts in two columns of five each. Then in the right sidebar, we
show another ten posts, beginning after the posts featured in the main column.

For this setup, we are going to include four loops within the theme file(s) required
to generate our fancy four-column page. For the sake of simplicity, we will say that
all of these loops are contained within our index.php file, even though in practice
the loops could be located in any combination of theme files.

Now that our four loops are in place, we need to ensure they are going to deliver
our carefully planned display of posts. If we were to simply plop down four default
WordPress loops, our web page would display four columns, each containing
the exact same posts. So, to massage our loops into shape, we turn again to the
powerful query_posts function.

As shown in the diagram at the top of this page, we add two or three (depending
on the loop) parameters to each of our four query_posts functions. These
parameters cause the following behavior:

• The “cat” parameter
 Loop 1 - display posts only from category seven
 Loop 2 - display posts not from category seven
 Loop 3 - display posts not from category seven
 Loop 4 - display posts not from category seven

94

• The “posts_per_page” parameter
 Loop 1 - display only three posts
 Loop 2 - display only five posts
 Loop 3 - display only five posts
 Loop 4 - display only ten posts

• The “offset” parameter
 Loop 1 - (not used)
 Loop 2 - (not used)
 Loop 3 - skip the first five posts
 Loop 4 - skip the first ten posts

At this point, the loops have each been modified to display the desired posts. The
only other thing to consider before calling it a night is whether or not we want
to display post navigation links for one of our loops. In a single-loop setup, we
can use the posts_nav_link() template tag to display post navigation links on our
home, index, category, and archive pages. Such navigation links would enable
visitors to check out previous or more recent posts, depending on page view.

If we don’t need to display the post-navigation links, such as would be the case in a
“magazine-style” theme, then our work here is finished. If, on the other hand, we
do want the navigation links for one of our loops, the query_posts function will be
insufficient to get the job done. In our current loop setup, query_posts will override
the default posts object query, making it impossible for posts_nav_link to show the
next series of posts.

The key to restoring proper post pagination when using multiple loops is to
preserve the paged offset parameter of our default posts query. There are several
ways to do this, but the easiest is to simply redefine the $posts variable by
appending our custom parameters onto the original query. This is done as follows:

<?php $posts = query_posts($query_string.'&cat=-7&posts_per_page=5'); ?>

Now we can restore post pagination by using this new query to replace one of the
four query_posts functions currently in place. The loop that will be modified by this

WP Page Navigation

For a definitive guide to
WordPress page navigation,
check out Digging into
WordPress:

http://digwp.com/u/401

Multiple & Custom Loops

At Perishable Press, one of my specialties is
the WordPress Loop. If you are looking for
more in-depth information on creating and
using multiple & custom loops, scan through
the library of articles in the “loop" tag
archive:

http://digwp.com/u/402

http://digwp.com/u/401
http://digwp.com/u/402

95

new query is the one that will be equipped to use the navigation links generated
by the posts_nav_link function. Because our new query is already set up for our
second, main-left loop, we will go ahead and choose that loop for our navigation
links. Thus, after implementing our new query for the second loop, our fancy four-
loop functionality will employ the following code (simplified for clarity):

<?php query_posts('cat=7&posts_per_page=3');
 if (have_posts()) : while (have_posts()) : the_post();
 the_content();
 endwhile; endif; ?>

<?php $posts = query_posts($query_string.'&cat=-7&posts_per_page=5');
 if (have_posts()) : while (have_posts()) : the_post();
 the_content();
 endwhile;
 posts_nav_link();
 endif; ?>

<?php query_posts('cat=-7&posts_per_page=5&offset=5');
 if (have_posts()) : while (have_posts()) : the_post();
 the_content();
 endwhile; endif; ?>

<?php query_posts('cat=-7&posts_per_page=10&offset=10');
 if (have_posts()) : while (have_posts()) : the_post();
 the_content();
 endwhile; endif; ?>

Now that is a thing of beauty. If using this PHP template to implement your own
loops, you will need to use some (X)HMTL and additional template tags to flesh

Loop 1 - Left Sidebar

Normal loop using query_posts
to display only three posts from
category seven.

Loop 2 - Main Left

Normal loop using a custom
query_posts for the value of
the $posts variable. Here we
are displaying five posts not
from category seven, and then
including some post navigation
using the posts_nav_link tag.

Loop 3 - Right Main

Normal loop using query_
posts to display five more posts
not from category seven. We
also use an offset parameter to
avoid post duplication.

Loop 4 - Right Sidebar

Normal loop using query_
posts to display ten more posts
not from category seven. Again,
the offset parameter is used to
avoid duplication of posts.

96

things out and display the relevant post information, such as the title, date, author,
and so on. The key thing is getting the multiple-loop functionality working with
page navigation, and this template will take care of you in that department.

4.2.1 Sidebars and Footers
Sidebars and footers are such ubiquitous design elements that there are special
functions for calling them, just like the header. Let’s take an example like this:

Ah, notice the two sidebars? That is an excellent way of presenting lots of
information to your visitors. Here’s how it’s done…

4.2.2 Multiple Sidebars

The code for creating a layout like the one shown above would look something
like this:

Header

Footer

Main Content
Left

Sidebar
Right

Sidebar

97

<?php get_header(); ?>

<?php get_sidebar(); ?>

 <div id="main-content">

 // Loop

 </div>

<?php get_sidebar("secondary"); ?>

<?php get_footer(); ?>

The two get_sidebar() template tags seen in this code should be placed in all of
the major template files that are responsible for a full page layout (index.php,
archive.php, single.php, page.php). You would then customize your two sidebar
templates, “sidebar.php” and “sidebar-secondary.php”, with any markup and
template tags that you would like. Here is a very basic example showing the HTML
that might be generated from our dual-sidebar code:

<div id="sidebar">

 <!-- place markup and template tags here for your first sidebar -->

</div>

<div id="main-content">

 <!-- place markup and template tags here for your post loop -->

</div>

<div id="sidebar-secondary">

 <!-- place markup and template tags here for your second sidebar -->

</div>

<div id="footer">

 <!-- place markup and template tags here for your footer -->

</div>

Modular Semantics

Notice we didn't actually
call the right sidebar “right,”
we called it “secondary”. If
someday it was decided that
the sidebars should be flipped,
“right” wouldn’t make a whole
lot of sense anymore.

That’s what semantics means
in web design – describing
without specifying.

first sidebar appears here

second sidebar appears here

98

Loop of most
recent content

List of categories
as main nav

Breadcrumbs

Prominent
Search

RSS Feed
Link

Static
Page

get_search_form();bloginfo('rss_url');wp_list_pages("include=7");

while (have_posts())

 Home
 wp_list_categories();

http://net.tutsplus.com

http://net.tutsplus.com

99

This gives us the structure we need to create our three-column layout using CSS:

#sidebar { width: 200px; float: left; }

#main-content { width: 500px; float: left; }

#sidebar-secondary { width: 200px; float: right; }

#footer { clear: both; }

4.3.1 Menus, Archive Lists & Tag Clouds
There are all kinds of ways to create dynamic navigation from within WordPress.
This is a great thing because good navigation is key to the success of any website.
When we create Pages and Posts in WordPress, at the same time we are creating
that content we are creating ways in which to navigate to that content. Let’s look
at two examples.

A category-rich blog

Look at the popular web development blog Nettuts+. They have a fairly traditional
blog structure, where Posts are published from day to day in a chronological
format. The homepage features new Posts of all types, starting with the most
recent. On a blog like this, it is likely visitors are coming to do one of two things:
See what’s new or find something they are looking for. The site does a good job at
both, displaying a prominent search bar, and featuring new content first. For that
latter group, search might not be the only thing they need. What if they aren’t
looking for something specific enough for search, or they can’t think of a search
term they would need to find it. In this case, breaking down the site into categories
is perfect, because that gives that visitor an option to drill down into the site and
likely get closer to what they are looking for. For example, if they were looking
for an icon set to use, their intuition might lead them to click on the Freebies part
of the navigation. You can see some of these key layout elements, along with the
WordPress code that goes with them, on the adjacent page.

100

Hierarchical content

Of course we know that WordPress isn’t limited to a blog structure. Equally viable
is using the Page system to create hierarchies of content. Take for example the
Snippets section on CSS-Tricks. The homepage for the Code Snippets is the proud
parent of six Child Pages, which each serve as a category for a particular coding
language. Then, each of the six Child Pages is the parent of many more Child
Pages, which together comprise the growing army of code snippets.

This is a whole hierarchy of content that presents all kinds of opportunities for
menu creation. In this Snippets example, the Snippets homepage has a unique page
template which uses wp_list_pages to output all of its own Child Pages. By default,
that function lists not only Child Pages, but also the entire hierarchy of pages
beneath it. In other words, Child Pages of Child Pages, also known as grandchildren.
In the markup, nested lists represent the Hierarchical relationship of these pages.

In the CSS, the different levels of nested lists are targeted and styled differently
to emphasize their hierarchy and provide intuitive navigation of the individual
snippets. A little jQuery is also in effect, which makes the list act like an accordion,
where each group can be opened and closed for browsing.

On the left, the Pages are set up
in a hierarchy in the Admin area
of WordPress.

On the right, that page structure
is output with wp_list_pages()
and styled with CSS and jQuery.

wp_list_pages

For a great collection of
delicious recipes for Page
menus and Page listings, check
out this article at Digging into
WordPress:

http://digwp.com/u/403

http://digwp.com/u/403

101

4.3.2 Page-Specific Menu Styles
In the Snippets section on CSS-Tricks (see previous section), we have a three-
layer deep hierarchy of Pages. Each different level of the hierarchy has different
navigational menu needs. Here is a closer look into the page-specific menu styles
used for CSS-Tricks’ Code Snippets.

• Parent Page = Snippets Home Page
The parent page uses a special template file called “page-snippet-cat.php.” This
unique page template allows us to do anything we want with this page, but
ultimately it won’t be all that different than the rest of the pages on the site.
For example, the custom Snippets Page includes the exact same header, sidebar
and footer as every other page on the site. The difference between the custom
page and other pages is a special header section that displays all child pages
with this:

<?php wp_list_pages('title_li=&exclude=3285,3473&child_of='.$post->ID); ?>

This function generates all of the markup required to display a nested-list menu
of every single snippet posted to the site. In the parameters of this function,
the title is eliminated, a few pages are excluded (e.g., the Submit Snippet page
doesn’t need to be shown), and the ID of the current page is specified to ensure
that the menu displays only children of the Snippets page.

• Children Pages = Code Languages
Conveniently, all six children pages use the exact same page template as the
parent page, which keeps things nice and compact. Anytime you can make
a template flexible enough to handle many pages, you should. Because our
wp_list_pages function lists pages that are the child pages of the current page,
it works just fine here as well, and already includes the special Snippets section
header.

With both the parent and children pages of this hierarchy, we need some special
CSS and JavaScript. The CSS will apply some special styling and the JavaScript
will produce the “accordion” display effect. Why can’t we include this CSS code
in our site’s CSS file and the JavaScript code in our site’s JavaScript file? Well, we

102

could… but 95% of the pages on this site don’t need them, so it’s a waste of
bandwidth 95% of the time. Better to go with the extra file request only when
needed. The following code is used in the <head> section of header.php:

<?php if (is_page_template("page-snippet-cat.php")) { ?>

 <link rel="stylesheet" type="text/css" href="<?php bloginfo('stylesheet_
directory'); ?>/css/snippets.css" />

 <script type='text/javascript' src='<?php

bloginfo('stylesheet_directory'); ?>/js/snippets.js'></script>

<?php } ?>

• Grandchildren = Individual Snippets Pages
The actual code snippets will have their own unique page template. At this
point we no longer need to list child pages (the grandchildren aren’t parents),
so the wp_list_pages function is gone. Now that we are two generations down
the hierarchy though, it makes sense to offer the user a navigational trail back
up the directory tree. For this, we can use the excellent NavXT plugin, available
at http://digwp.com/u/114, which makes outputting a breadcrumb trail as simple as:

<?php

 if (function_exists('bcn_display')) {

 bcn_display();

 }

?>

So this was all a rather specific example, but the main point is that when you use
a unique page template to create a page, the sky is the limit for what kind of
navigation/menu you want to offer. Think of the needs of your user when they
have reached that page and try to accommodate.

http://digwp.com/u/114

103

4.3.3 Create the Perfect Archives Page
Of course “perfect” is a very relative term and the perfect page for your site
depends on your site’s particular content and purpose. But if you want to create an
effective Archives Page, here is a pretty solid approach.

Create a new page template just for archives, something like “archives.php,” and
include a good variety of template tags to produce archive links to all of your
content. Here are some useful tags to use on your Archives Page:

• List of all posts organized by year
 <?php wp_get_archives('type=yearly'); ?>

• List of all posts organized by month
 <?php wp_get_archives('type=monthly'); ?>

• List of all posts organized by day
 <?php wp_get_archives('type=daily'); ?>

• List of all authors
 <?php wp_list_authors(); ?>

• List of all categories
 <?php wp_list_categories('title_li='); ?>

• List of all tags
 <?php wp_tag_cloud(); ?>

• List of all pages
 <?php wp_list_pages('title_li='); ?>

Putting these template tags together, the page template for our Archives would
look like this:

Archive vs. Archives

In WordPress, “Archive”
refers to page views including
categories, tags, dates, and
so on.

The term “Archives” (note
the “s”), on the other hand,
refers to a page that is used to
display organized links to all
of your site's content.

Random Bonus Info

If you ever see code in
WordPress like this:

__("string");

Where the string could be
anything, that is actually a
function for “localization”
in WordPress. If a different
localization is active, it will
search for the translation for
that word and return that,
otherwise return what
is provided.

104

<?php /* Template Name: Archives */ ?>

<?php get_header(); ?>

 <div id="content">

 <h2><?php the_title(); ?></h2>

 <div class="col">

 <h3>Archives by Year:</h3>

 <?php wp_get_archives('type=yearly'); ?>

 <h3>Archives by Month:</h3>

 <?php wp_get_archives('type=monthly'); ?>

 <h3>Archives by Day:</h3>

 <?php wp_get_archives('type=daily'); ?>

 <h3>Archives by Category:</h3>

 <?php wp_list_categories('title_li='); ?>

 <h3>Archives by Author:</h3>

 <?php wp_list_authors(); ?>

 </div>

 <div class="col">

 <h3>All Pages:</h3>

 <?php wp_list_pages('title_li='); ?>

 <h3>Archives by Tag:</h3>

 <?php wp_tag_cloud(); ?>

 </div>

 </div>

<?php get_sidebar(); ?>

<?php get_footer(); ?>

105

4.3.4 Impress Your Visitors with a Tag Cloud
One of the coolest things about tags is that you can display them as a giant
“cloud” of links. Tag clouds are awesome not because they are great navigational
tools, but rather because they give the visitor a glimpse at the “big picture” of
what your site is all about. In WordPress, tag clouds are easy to display and highly
configurable, enabling anyone to customize the perfect tag cloud for their site.
We could go on and on for days just talking about tag clouds, but instead we’ll just
show you the code needed to make your own:

<?php wp_tag_cloud(array(

 'smallest' => 10, // size of least used tag

 'largest' => 18, // size of most used tag

 'unit' => 'px', // unit for sizing

 'orderby' => 'name', // alphabetical

 'order' => 'ASC', // starting at A

 'exclude' => 6 // ID of tag to exclude from list

)); ?>

At this point in the game, the parameters used in the wp_tag_cloud template
tag should be pretty straightforward. Just use the comments in the code to set a
desired value for each of the parameters and you are off to tag-cloud heaven. Of
course, for more information on how to configure these parameters, refer to the
Codex: http://digwp.com/u/404.

4.4.1 Side Content and Useful Menu Items
One of the funnest things to build is your site’s sidebar. Let’s look at some things to
include in your sidebar that might be useful and appealing to your visitors.

http://digwp.com/u/404

106

4.4.2 Displaying Recent Comments
There are three possibilities here. Let’s go from easiest to hardest.

1. Widget - If the sidebar is widgetized, simply drag the “Recent Comments”
widget (built-in) into the sidebar zone. Give it a title, specify the number you’d like
to show, and save it. Done.

2. Plugin - The Get Recent Comments plugin at http://digwp.com/u/115 provides a
simple function, customizable through the Admin, for displaying recent comments.
It is built to be a widget, but as we just learned that functionality is obsoleted now
by WordPress’ own widget.

3. Custom Function - Because comments are stored in our database, getting that
data ourselves is possible. In a nutshell, we create a new function in our functions.
php file and craft an SQL query that would gather all of the most recently approved
comments and return them to us. Then we’d loop through those returned results
and display them one by one (code and more information available from WPLancer
at http://digwp.com/u/116). Here it is:

<?php // display recent comments
function dp_recent_comments($no_comments = 10, $comment_len = 35) {
 global $wpdb;
 $request = "SELECT * FROM $wpdb->comments";
 $request .= " JOIN $wpdb->posts ON ID = comment_post_ID";
 $request .= " WHERE comment_approved = '1' AND post_status = 'publish'
 AND post_password =''";
 $request .= " ORDER BY comment_date DESC LIMIT $no_comments";
 $comments = $wpdb->get_results($request);
 if ($comments) {
 foreach ($comments as $comment) {
 ob_start(); ?>

http://digwp.com/u/115
http://digwp.com/u/116

107

 <a href="<?php echo get_permalink($comment-
>comment_post_ID) . '#comment-' . $comment->comment_ID; ?>">< ?php echo
dp_get_author($comment); ?>:
 < ?php echo strip_tags(substr(apply_filters('get_
comment_text', $comment->comment_content), 0, $comment_len)); ?>

 < ?php
 ob_end_flush();
 }
 } else {
 echo 'No Comments';
 }
}
function dp_get_author($comment) {
 $author = "";
 if (empty($comment->comment_author))
 $author = 'Anonymous';
 else
 $author = $comment->comment_author;
 return $author;
} ?>

To use this function, simply call it from anywhere in your theme:

<?php dp_recent_comments(6); ?>

4.4.3 Displaying Recent Posts
Lets do this again from easiest to hardest.

• Widget - The easiest possible way to do this is through a widgetized sidebar.

108

Just like recent comments, there is a built-in “Recent Posts” widget which will
do the trick. Just drag it into your sidebar zone and save it.

• Function - We don’t have to write a custom function this time, we can just
use the wp_get_archives function, which we already looked at a little. A simple
function like this will display linked titles to recent posts:

 <?php wp_get_archives('type=postbypost&limit=5');

• Custom Loop - Finally we could go totally home-brew and just write a custom
loop to display recent posts. This offers by far the most control as we can do
anything inside this loop, including accessing the full content or custom fields.

 <?php

 query_posts("posts_per_page=10&what_to_show=posts&orderby=date");

 if (have_posts()) : while (have_posts()) : the_post();

 // output custom stuff here! Post title, content, custom fields..

 endwhile; else:

 // message if nothing found

 endif;

 wp_reset_query();

 ?>

4.4.4. Listing Popular Posts
Popularity is more loosely defined than something like “recent.” How do you
define popularity? Page views? Number of comments? Back links? If you want
to accommodate all the above, try the WordPress Popular Posts plugin, which is
available at http://digwp.com/u/117.

This plugin logs relevant data and then makes outputting a list of popular posts as
trivial as using this template tag anywhere in your theme:

Resetting

The query string is set when
any page in WordPress is
loaded. You can override it by
doing you own query_posts,
but then that original query
string is destroyed. You can
restore it with this:

wp_reset_query();

http://digwp.com/u/117

109

<?php if (function_exists('get_mostpopular')) get_mostpopular(); ?>

If you wanted to gauge popularity only based on the number of comments, you
could achieve this with your own database query (thanks to the Bin Blog for the
idea – http://digwp.com/u/118):

<ul class="popular-posts">

 <?php $popular_posts = $wpdb->get_results("SELECT id,post_title FROM

 {$wpdb->prefix}posts ORDER BY comment_count DESC LIMIT 0,10");

 foreach($popular_posts as $post) {

 print "id) ."'>".

 $post->post_title."\n";

 } ?>

4.4.5 Listing Recently Modified Posts
You might think we’d have to go database fishing or use a plugin for this. We
certainly could, but the query_posts function supports an orderby parameter which
can get the job done for us easily:

<?php query_posts("posts_per_page=5&what_to_show=posts&orderby=modified");

if (have_posts()) : while (have_posts()) : the_post();

 // output custom stuff here! Post title, content, custom fields..

endwhile; else:

 // message if nothing found

endif;

wp_reset_query(); ?>

Function exists?

Before using a function that
was created via a plugin,
it is best practice to use the
function_exists() function
before calling it. If the
function doesn’t exist (i.e.,
the plugin isn’t installed or is
deactivated), the function won’t
be called. That is far better
than calling a nonexistent
function since PHP will
halt rendering and will likely
destroy your theme.

http://digwp.com/u/118

110

4.4.6 Listing Random Posts
Again the query_posts function has our back, allowing the orderby parameter to
accept “rand" to display a series of random posts:

<?php query_posts("posts_per_page=3&what_to_show=posts&orderby=rand");

if (have_posts()) : while (have_posts()) : the_post();

 // output custom stuff here! Post title, content, custom fields..

endwhile; else:

 // message if nothing found

endif;

wp_reset_query(); ?>

4.4.7 Import and Display Twitter
Integrating your recent tweets from Twitter can be a fun way to communicate
with your web visitors and keep content on your site fresh. Twitter has a robust API
system for getting at and using that data. But Twitter is not an infallible service,
and in fact, slowness and downtime is a pretty common occurrence for them.
Because of this, when using their API to get stuff and display it on your own pages,
it should be done in such a way that won’t affect the loading of the page, and
won’t look awful in the case of API failure.

This Twitter API communication can be done entirely through JavaScript, which is
our preferred and recommended way for a few reasons:

• Connection to the Twitter API happens on the client side and keeps server
load down

• If done right, doesn’t affect page load time

• Data can be processed and appended to the page only upon success

With Ajax

A neat idea with this technique
is to make a page template
that displays just one post and
nothing else. Then use Ajax to
call that URL and display it
(for example, in the sidebar).
We cover (and use) this
technique on the Digging Into
WordPress website, including
a “Get Another!” button:

http://digwp.com/u/411

http://digwp.com/u/411

111

So let’s get it done. We are using jQuery in this book
(because it’s awesome) so let’s keep going down
that route.

Step 1: Enqueue jQuery

Put this PHP code into your functions.php file.
This will load the jQuery library onto your page by
inserting a link in the <head> section where you call
the wp_head function.

if(!is_admin()) {

 wp_deregister_script('jquery');

 wp_register_script('jquery', ("http://ajax.googleapis.com/ajax/libs/
jquery/1.3.2/jquery.min.js"), false, '1.3.2');

 wp_enqueue_script('jquery');

}

Step 2: Load your custom script

You’ll need to load a JavaScript file for this, so if you have one already going for
your site, you can use that, otherwise load in a new one.

<script type="text/javascript" src="<?php bloginfo('template_url'); ?>/js/
twitter.js"></script>

Step 3: The jQuery plugin

Next, we want to create a jQuery plugin:

(function($){

 $.fn.lastTwitterMessage = function(username){

In the footer of CSS-Tricks,
a speech bubble is displayed
above Chris showing his
latest tweet. With this jQuery
method, should the Twitter
service be unavailable,
the speech bubble just
doesn’t show.

112

 var $base = this;

 if(!username || username == "") return this; // username required

 var url = "http://twitter.com/statuses/user_timeline.json?callback=?";

 $.getJSON(url, { count: 10, screen_name: username },

 function(data){

 if(data && data.length >= 1){

 try{

 var item = null;

 for(var i = 0; i < data.length; i++){

 if(/^@/i.test(data[i].text)) continue;

 item = data[i]; break;

 }

 if(!item) return;

 var $tweet = $("<p></p> ").text(item.text);

 $tweet.html(

 $tweet.html()

 .replace(/((ftp|http|https):\/\/(\w+:{0,1}\w*@)?(\S+)
(:[0-9]+)?(\/|\/([\w#!:.?+=&%@!\-\/]))?)/gi,'$1')

 .replace(/(^|\s)#(\w+)/g,'$1<a href="http://search.twitter.com/
search?q=%23$2">#$2')

 .replace(/(^|\s)@(\w+)/g,'$1<a href="http://twitter.
com/$2">@$2')

)

 $tweet.append(" <a href='http://twitter.com/" + username +
"'>(∞) ").wrapInner("");

 $base.empty().append($tweet).show();

 } catch (e) { };

113

 };

 });

 return this; // Don't break the chain

 };

})(jQuery);

That plugin, when we call it, does all the heavy lifting of communicating with
Twitter and pulling the latest tweet. It even does fancy stuff like turning URLs into
real links, hash tags into search links, and @replies into profile links.

Step 4: Calling the plugin

You could load in another JavaScript file just for this, or just append this beneath
the code you just added. We need a DOM-ready statement and then create an
element to load the plugin on.

$(function() {

 $("<div id='tweet'></div>").hide().appendTo("#footer")
 .lastTwitterMessage('chriscoyier');

});

That code is the magic. It waits for the page to be ready to be manipulated (DOM-
ready), creates a new (hidden) element, appends it to the page (into the footer),
and then calls the plugin on it. Should the plugin be successful in its duty, the new
element will show up on the page, if not, it will remain hidden.

4.4.8 Import and Display Delicious

There is, unsurprisingly, a number of ways to get this done. Delicious has APIs we
could wrangle with (JSON or XML). Delicious serves up RSS feeds we could parse
(see the next section). Delicious has JavaScript widgets that we could harness –

114

http://digwp.com/u/228. There are also quite a number of plugins for WordPress that
specially deal with Delicious – http://digwp.com/u/229.

There is one technique that stands out above the rest though, and that is a plugin
which imports data from your Delicious account and creates Posts from it. It’s
called Postalicious – http://digwp.com/u/230. It’s been a few years since it has been
updated but it still works swimmingly with the current version of WordPress.
Postalicious is able to check Delicious every hour and pull in new links. You can set
it to create drafts (recommended) or auto-publish posts. Simply choose a category,
and Postalicious will automatically create the posts, the title, and all of the HTML
formatting!

It should be noted that Delicious actually has some built-in (albeit rather hidden)
functionality right in the web app for communicating with a WordPress blog. It
isn’t very user-friendly and is difficult to customize, so we don’t recommend it.

4.4.9 Import and Display Other Content
An interesting fact about WordPress that you may not know is that it includes a
built-in RSS feed parser. This makes the job of fetching recent content from other
sites for display on your own pretty darn easy. You’ll need to include the feed.php
file that ships with WordPress on any page you want to do feed parsing, but after
that you are free to set up new SimplePie objects and do all the feed parsin’ you
desire! Check it out:

<h2>Recent News from Digging Into WordPress</h2>

<?php // Get RSS Feed(s)

include_once(ABSPATH . WPINC . '/feed.php');

// Get a SimplePie feed object from the specified feed source.

$rss = fetch_feed('http://digwp.com/feed/');

Wha?

What the heck is Delicious
you ask? Delicious is a very
popular social bookmarking
site. You save links with
annotation to your account
online (so you’ll never lose
them). And because others do
the same, Delicious is able
to know and share what are
the most popular links going
around at any
given moment.

http://delicious.com

http://digwp.com/u/228
http://digwp.com/u/229
http://digwp.com/u/230
http://delicious.com

115

// Figure out how many total items there are, but limit it to 5.

$maxitems = $rss->get_item_quantity(5);

// Build an array of all the items, starting with element 0 (first element).

$rss_items = $rss->get_items(0, $maxitems);

?>

 <?php if ($maxitems == 0) echo 'No items.';

 else

 // Loop through each feed item and display each item as a hyperlink.

 foreach ($rss_items as $item) : ?>

 <a href='<?php echo $item->get_permalink(); ?>' title='<?php echo
 'Posted '.$item->get_date('j F Y | g:i a'); ?>'>

 <?php echo $item->get_title(); ?>

 <?php endforeach; ?>

SimplePie is a very robust feed parser, so you are in no way bound by the code
above for what you are able to accomplish. For a complete list of functions, check
out the SimplePie wiki at http://digwp.com/u/140, but to get the juices flowing, here
are some examples.

At the “feed level” (outside the feed loop), get the title, description, and
permalink of the feed:

Quick Backstory

WordPress used to use
MagpieRSS to do its feed-
parsing. The project was
discontinued and one of its
competitors SimplePie was
gaining traction in a big way.
WordPress switched over to
SimplePie, and now SimplePie
development has ended.

Someone may pick up
SimplePie and run with it,
but it seems like inclusion into
WordPress is the kiss of death
for any feed parser.

http://digwp.com/u/140

116

• get_title()

• get_description()
• get_author()

At the “item level” (inside the feed loop), get the date, content, and link:

• get_date()
• get_content()
• get_link()

The SimplePie Plugin http://digwp.com/u/141

SimplePie has a plugin for WordPress as well. It was probably more useful back
when WordPress didn’t ship with SimplePie, but the user-friendliness of it still
makes it a pretty cool plugin. Once installed and activated, you can spit out
external content as easy as calling the plugin function:

<?php

echo SimplePieWP('http://digwp.org', array(

 'items' => 5,

 'cache_duration' => 1800,

 'date_format' => 'j M Y, g:i a'

));

?>

Notice that the URL parameter isn’t a feed but rather just a regular website.
SimplePie is cool like that, with automatic feed detection. The plugin uses
“themes” to then output the content it finds. It ships with a number of themes,
which you can select and modify through the admin itself. Anything you can do
with SimplePie you can do with this plugin as well, the big advantage being the
themes and control through the Admin.

Importing Feeds

For an in-depth article
explaining everything you need
to know about importing and
displaying feeds in WordPress,
check out this post from
Perishable Press:

http://digwp.com/u/405

http://digwp.com/u/141
http://digwp.com/u/405

117

4.5.1 Creating and Using Child Themes
WordPress supports an interesting theme-development technique known as child
themes. The idea is that you can declare a base theme (or a “parent” theme as
makes more sense with this metaphor) and override the styling of that theme
without touching the base theme at all.

Why bother with this? Why not just duplicate the theme and make changes? Well
there is plenty of debate around this. Some folks think child themes are a waste
of time and others wholeheartedly endorse them. There are some things to think
about to help you reach your own conclusion. Here are a few…

Does your theme release updates that you like to stay up to date with? Theme
frameworks like to do this. If you have altered your theme, it becomes a big pain
to update it with a fresh release from the author. If you are using a child theme,
it’s not a big deal, just replace the parent and your alterations are intact. Are
you a theme author that wishes to release multiple variations on a theme? Child
themes may be the way to go. This way, you can offer up a theme and users can
just activate the one they like the best, without any manual alterations by them or
duplicate code by you.

Creating a child theme is remarkably simple. Just create a folder (named as you
wish) in your wp-content/themes directory, and within that folder place a single
style.css file.

The CSS file will have some specially formatted comments at the top of it which will
identify it, and most importantly, identify the parent theme which it intends to use.
Here is an example:

/*

Theme Name: My Cool Child Theme

Theme URI: http://digwp.com/

Description: Child Theme for Digging Into WordPress

118

Author: Chris Coyier

Author URI: http://chriscoyier.net/

Template: DigWP

Version: 2.0

*/

@import url("../digWP/style.css");

The most important line there is the “Template: DigWP” line,
which references the folder of the parent theme. The last
line imports the stylesheet from that parent theme. That is
optional, but very common, as the whole point is to start with
the parent theme as a base and overwrite/add to it. Anything
you write in the CSS file below this will overwrite anything
from the parent theme.

For example, if the link color is red in the parent (i.e., a {
color: red; }), but you declare it green (i.e., a { color: green;
}), your declaration in the child theme will be applied even
though it uses the exact same selector, because it is declared
after the parent style. No need for any fancy !important rules
or more specific selectors.

4.6.1 Styling Your Theme
In any WordPress theme, the style.css is required. In fact, WordPress won’t even
recognize a folder in your themes folder unless it includes this file. It has to be
there, but you aren’t necessarily required to use it. You don’t even have to call this
CSS file from your theme if you don’t want to, but since it’s required and definitely
standard practice, you might as well use it.

119

4.6.2 Different Inclusion Methods
When it comes to including CSS stylesheets for your WordPress-powered site, there
are plenty of options available to you. Let’s take a look.

The not-so-dynamic method

<link rel="stylesheet" href="/wp-content/themes/Your-Theme/style.css"
type="text/css" media="screen, projection" />

The super-direct method

<link rel="stylesheet" href="<?php bloginfo('stylesheet_url'); ?>"
type="text/css" media="screen, projection" />

The dynamic method

<link rel="stylesheet" href="<?php bloginfo('stylesheet_directory'); ?>/
style.css" type="text/css" media="screen, projection" />

IE-specific stylesheets

<!--[if IE 6]>

 <link rel="stylesheet" type="text/css" href= "<?php
bloginfo('stylesheet_directory'); ?>/css/style-ie6.css" />

 <script type='text/javascript' src='<?php bloginfo('template_url'); ?>/
js/DD_belatedPNG_0.0.8a-min.js'></script>

<![endif]-->

Linking to multiple CSS files

<link rel="stylesheet" href="<?php bloginfo('stylesheet_directory'); ?>/

DD_belatedPNG

That example JavaScript file
right over there is actually a
really useful script for getting
alpha-transparent PNG files to
work in IE 6.

http://digwp.com/u/412

http://digwp.com/u/412

120

style.css" type="text/css" media="screen, projection" />

<link rel="stylesheet" href="<?php bloginfo('stylesheet_directory'); ?>/
forms.css" type="text/css" media="screen, projection" />

@import

One somewhat common technique is to use the dynamic method to call your
theme’s style.css file at the root of the theme, but then have that file be empty
save for a few lines that load in additional stylesheets. This is perfectly acceptable,
but do note that this method is just as taxing (or more) than loading multiple
stylesheets directly in the <head>. The cleanliness of this though, is appealing.

@import "style/css/reset.css";

@import "style/css/typography.css";

@import "style/css/layout.css";

Conditionally loading extra CSS files

<?php if (is_page_template("page-snippet.php")){ ?>

 <link rel="stylesheet" type="text/css"
 href="<?php bloginfo('stylesheet_directory'); ?>/css/snippets.css" />

<?php } ?>

4.6.3 To Reset or Not To Reset?
While we are on the subject of CSS, but not on the subject of actually writing any
particular theme, we may as well talk about “resetting” stylesheets. The theory of
a reset stylesheet is that it removes the various default styling applied to elements
by browsers. These default CSS styles can be a bit unpredictable.

For example, the amount of default padding applied to the <body> element is
different in Firefox than it is in Internet Explorer. Likewise for other browsers – they
each apply their own set of CSS rules to various elements. In order to rein in these

121

differences, we use reset stylesheets to eliminate certain default styles and start
fresh. If we want some padding on our <body>, we can then apply it according to
our specific needs and have that value be consistent across all browsers.

Popular CSS Resets

• Eric Meyer’s Reset Reloaded - From the man himself: http://digwp.com/u/142

• YUI (Yahoo User Interface) Reset CSS - http://digwp.com/u/143

• Star Selector Reset - Looks like this: * { margin: 0; padding: 0; }

Reset stylesheets are not specific to WordPress, but rather a common consideration
for all websites. But since we are WordPress folks, this is how we might include a
reset stylesheet in our theme:

<link rel="stylesheet" href="<?php bloginfo('stylesheet_directory'); ?>/
reset.css" type="text/css" media="screen, projection" />

<link rel="stylesheet" href="<?php bloginfo('stylesheet_directory'); ?>/
style.css" type="text/css" media="screen, projection" />

Notice we included it before the main style.css file. Because we ultimately reset
the reset-styles with our own values, the reset will need to go first. Critics of reset
stylesheets will say that, because we ultimately reset the reset, it’s unnecessary.
Proponents say that the reset is there to catch things we normally wouldn’t write
into our own stylesheet but may pop up in the lifespan of the site.

4.6.4 Basic CSS Optimization

Now that we’ve just shown you how you might include a reset stylesheet in your
theme, we’ll tell you that might not be the best way to do it. Ha! You really gotta
watch us!

The problem with including a reset stylesheet isn’t the reset stylesheet itself, but

CSS Reset Library

There are many, many
different pre-made CSS resets
available to you. For a fairly
comprehensive collection of
some of the best, check out:

http://digwp.com/u/406

http://digwp.com/u/142
http://digwp.com/u/143
http://digwp.com/u/406

122

rather because it’s a separate file, meaning yet another thing the browser needs to
download. In geek speak, it’s another page resource, or another HTTP request. The
more HTTP requests, the slower your page will download and render.

If speed is of the utmost concern, you may want to include the reset at the top
of your CSS file instead of as a separate file. In this case, that makes perfect
sense because the reset will be loaded on all pages of the site. But what about
CSS files that you load conditionally? For example, perhaps you have a unique
homepage with its own unique set of CSS rules. Loading a homepage.css file in that
circumstance makes perfect sense, because otherwise every other page on the site
will be loading that CSS file despite it not needing it. So even though it’s a separate
HTTP request, it probably makes the most sense.

Reducing the number of CSS files used isn’t the only way to optimize CSS though,
you might also employ techniques to reduce the file size of the CSS itself. When we
write CSS, we write it so it is best readable for us. That means spacing declarations,
tabbing new lines, and including comments such that reading and maintaining
the file works best for us. But all of the spacing, tabbing, new lines, and comments
adds extra weight to the CSS file, and thus produces a larger file for visitors
to download.

Nicely formatted CSS is for you, not for the browser, and not for your visitors. So
there is no particular need to serve up that nicely formatted version. You may want
to use a tool like the CSS Optimiser – http://digwp.com/u/144 – to strip all of that extra
stuff away from the CSS file and keep the file size as small as possible. Of course, as
soon as you do this, the file becomes nearly impossible to maintain, so be sure to
keep an always-up-to-date copy of the original stylesheet. Then make changes to
the original, optimize it, and serve up the optimized version live.

Here is a good example of what an optimized stylesheet might look like:

#mainNav{position:absolute;bottom:8px;left:0;width:780px;list-
style:none;z-index:100}#mainNav li{display:inline}#mainNav li a{-webkit-
transition:opacity .15s ease-in-out;display:block;float:left;width:144

WordPress Optimization

We explain how to minimize
the number of HTTP
requests for your site in more
detail, and explore many other
optimization techniques in
Chapter 9.5.1.

http://digwp.com/u/144

123

px;height:50px;background:url(images/nav.png) no-repeat;text-indent:-
9999px;margin:0 10px 0 0;opacity:0.5;filter:alpha(opacity=50)}#mainNa
v li.forums a{background:-144px 0}#mainNav li.videos a{background:-
288px 0}#mainNav li.downloads a{background:-432px 0}#mainNav li.snippets
a{background:-576px 0}

Not very readable eh? But that chunk above had a 43% file-size savings compared
to the CSS it originally came from.

4.7.1 Using Multiple Themes
Of course, only one theme can be displayed to any one person at a time. But that
doesn’t mean you can’t serve up different themes to different people. Why would
you want to do such a thing?

• Give users the choice of themes

• Serve a different theme to yourself, admins, or other registered users

• Have users arriving in different circumstances (e.g. mobile devices) see
a different theme

How we accomplish this witchcraft depends on which of these scenarios we are
trying to accommodate. Let’s look at each one…

Giving Users Choice

It might be a fun feature to allow your users to choose a custom theme for viewing
your site. This is probably not practical for a large number of sites, but if done with
class it can be very cool! For example, Perishable Press offers theme switching right
in the sidebar (or footer, depending on theme). On Digging Into WordPress, we
have a “Theme Clubhouse” – http://digwp.com/u/407 – where we show off our free
themes using a single installation of WordPress.

http://digwp.com/u/407

124

This technique is made possible through the excellent Theme Switcher plugin:
http://digwp.com/u/408

Check out Perishable Press for an example of this, where Jeff offers visitors the
choice of a whole bunch of different themes to choose from: http://digwp.com/u/1

Make sure that you incorporate a way for visitors who have just switched themes
a way to switch back. Also, this could be an awesome technique to combine with
child themes! (Refer back to Section 4.5.1 for more information on child themes.)

Different theme for administrators

The most common use for the theme-switching technique is theme development.
As any good designer knows, to do the best work possible you need to design
against real content, not a bunch of lorem-ipsum filler. If you could go commando
and develop against a live theme, but only you saw that theme while everyone else
was seeing the old theme, that would be an ideal way to develop. That is exactly
what is possible with the Theme Switch plugin – http://digwp.com/u/409 (not to be
confused with the aforementioned Theme Switcher plugin, yeeesh).

Upload and activate this plugin, and you’ll have an options panel for selecting the
theme to display based on the user’s role. For example, you could show only admin-
level users a particular theme. This goes for all user roles, so you could theoretically
show a different theme to all registered users. Or perhaps if you are working on
a new design, open that up beyond admins to show your author-level users the
design as well.

Different theme for mobile viewers

Another reason you might want to serve up an alternate theme is based on the
circumstances by which the user has arrived at your site. A good example of this is
delivering a special theme for users arriving via mobile device.

As with just about everything else you need to do with WordPress, there are
plugins specifically designed to accommodate your site’s mobile visitors. The

http://digwp.com/u/408
http://digwp.com/u/1
http://digwp.com/u/409

125

WPtouch plugin – http://digwp.com/u/410 – detects for high-capability mobile devices
(e.g., the iPhone, iPod Touch, Android, and Blackberry) and serves up a very nice
and fully functional theme for those users.

If you would rather roll your own theme, one possibility is to do your own mobile
device sniffing and redirect those users to another URL. Here is a JavaScript way to
go about it that you could put in your site’s <head>. Just make sure that the script
is not also located on the URL to which it redirects, otherwise your visitors will be
caught in an infinite loop!

<script type="text/javascript">

if (screen.width <= 699) {

 document.location = "mobile.html";

}

</script>

This technique could be combined with the Theme Switcher plugin (see previous
section on Giving Users Choice), as that plugin allows for special URLs which can
switch the theme. The possibilities are endless!

Mobify http://mobify.me

Another option for creating a special theme for
mobile viewers is a free service called Mobify. Mobify
doesn’t actually create WordPress themes, but the
end result is essentially the same. They process the
content from your site, and then apply new CSS
styles (created and controlled by you) to create the
mobile view. This means that the mobile view is just

as dynamic as the regular site. Mobify will serve this
content from the Mobify domain, or just as easily,
through a subdomain located on your own site (e.g.,
m.ilovetypography.com) with a simple CNAME change on
your domain registry.

http://digwp.com/u/410
http://mobify.me
http://m.css-tricks.com

126

4.8.1 Widgetizing
Many themes you’ll find around
abouts the interweb are already
“widgetized.” That is, they contain
the code necessary to let the
WordPress Admin know about areas
that are ready to accept widgets and
be managed by the Appearance >
Widgets settings area in the Admin.

Theme authors who intend their
work to be used by a wide audience
almost always include widgetized
areas, but it’s not a guarantee.

If you are building your own theme,
it’s totally up to you if you wish to
include this.

As we have seen earlier in this
chapter, widgets can do some pretty
cool stuff so at least you should
probably consider it. You can have
static stuff in your sidebar along
with a widgetized area too, so the
commitment here is pretty low.

Here’s how to do it:

Step 1: Declare your widgetized area

The most common place for widgets is in the sidebar. So in the sidebar.php file:

127

<!-- Static content could go above widgetized area. -->

<?php if (!function_exists('dynamic_sidebar') ||
 !dynamic_sidebar('Sidebar Widgets')) : ?>

 Content in here will ONLY show if there are no widgets active,
 or if the version of WordPress running doesn't support widgets.
 Otherwise, this area is where the widgets go, set via the Admin

<?php endif; ?>

<!-- Static content could go below widgetized area. -->

Step 2: Activate your widgetized area

In the functions.php file, use this function to activate the widgetized area:

if (function_exists('register_sidebar')) {

 register_sidebar(array(

 'name'=>'Sidebar Widgets',

 'before_widget' => '<div id="%1$s" class="widget %2$s">',

 'after_widget' => '</div>',

 'before_title' => '<h4 class="widgettitle">',

 'after_title' => '</h4>',

));

}

You’ll notice in this code that you reference the widgetized area by name and
then give it some HTML parameters for before/after the widget and before/after
the title. This gives you the chance to mimic your theme’s setup and gives you the
hooks you need to style the widgets as needed.

128

In the HTML, notice that each widget also contains a class and ID value, which gives
you the opportunity to style all the widgets as a group or target individual widgets
for styling.

Step 3: Managing your widgets

There are all sorts of potentially useful widgets built right into WordPress. Simply
drag them from the “Available Widgets” section over into the widget area to the
right. The area should be showing and properly labeled now. Once dragged over,
widgets typically have options that you can set, then save.

Note that many plugins operate by adding to this list of available widgets.

If the beauty of widgets still eludes you, consider the control it offers someone
managing a site who is somewhat comfortable with WordPress but not at all
comfortable with editing code. A widgetized area allows them to rearrange things,
edit text, change titles, change the number of things shown, and more, directly
through the Admin itself, without having to change one piece of code.

Coming up…
With a good understanding of the WordPress theme system under our belts, we
forge ahead and dig into the many ways that WordPress can be extended…

129

Komodo Media is a
stunningly beautiful site
with loads of attention to
detail. WordPress behind
the scenes? You bet.

http://digwp.com/u/413

http://digwp.com/u/413

Any sufficiently advanced technology is

indistinguishable from magic.

– A R T H U R C . C L A R K E

Welcome to WordPress

131131

5.1.1 Extensibility
Out of the box, WordPress is a powerful platform for dynamic websites that may
be used to build a wide variety of projects. Especially for blog-style sites, WordPress
provides everything you need to establish yourself on the Web with a solid, fully
functional blog featuring everything from a beautiful, easy-to-use Admin interface
to a robust posting and commenting system that makes the process of posting
content and facilitating discussion a real breeze. Even so, one of the reasons why
WordPress has achieved its enormous popularity involves its vast extensibility.

5.1.2 Extending WordPress with Plugins
From themes and plugins to custom functions, scripts and even core hacks, the
degree to which WordPress enables users to customize its implementation is
astounding. In fact, with a few choice plugins, it is possible to transform WordPress
from a powerful blogging engine into a highly customized Content Management
System (CMS). In this chapter we examine some of best techniques and important
aspects for extending the functionality of WordPress.

5.1.3 A Plugin for (Almost) Everything
The easiest way to integrate additional functionality into WordPress involves
taking advantage of the thousands of plugins available at the WordPress Plugins
Directory and around the Web. Even when you exclude the many plugins not

5 Extending the Functionality
of WordPress

132

included in the official directory, there are still more than 10,648 plugins available
at the time of this writing (more than twice the number since the last update of
this book). With that many plugins available to you, the chances that you will find
one that suits your specific needs is very good indeed. Here are some of the more
popular categories of plugins featured at the Plugin Directory:

• widgets - 1769 plugins

• Post & posts - 2178 plugins

• administration (admin) - 948 plugins

• sidebar - 906 plugins

• comments - 703 plugins

• images - 584 plugins

• links - 525 plugins

And many, many more. Out of the box, WordPress includes two plugins, one
incredibly useful and the other relatively useless. The first of these default plugins
is Akismet, which is one of the best anti-spam plugins currently available for
WordPress. Akismet protects your comments by comparing them against their
constantly evolving database. Any comments that look like spam are blocked and
sent quietly to the spam bin. Users can then review the comments flagged as spam
or else let Akismet delete them automatically after 15 days.

Unfortunately, the other plugin that is included with WordPress, Hello Dolly, is
not nearly as useful. This plugin does nothing more than display a random lyric
from Jerry Herman’s song, “Hello Dolly,” in the upper-right hand corner of the
WordPress Admin screen. Hello Dolly was the very first plugin made for WordPress,
and will probably be included with WordPress until the end of time. Unless you’re
really sentimental or happen to love Louis Armstrong, this plugin is essentially
worthless and should be deleted as part of your configuration and set-up routine.

Of the thousands of plugins available for WordPress, there are a handful of plugins
that are installed on a large majority of sites and are considered by many to be

Goodbye Dolly?

In a poll at the DiW site,
WordPress users voted whether
or not the Hello Dolly plugin
should be included with
WordPress. The results? Of
over 1200 people who took the
poll, more than 1000 of them
(78%) voted that the plugin
should not be included
with WordPress.

http://digwp.com/u/419

http://digwp.com/u/419

133

“absolutely essential” for any WordPress installation. These plugins greatly increase
the power of WordPress in several important areas. See section 2.7.4 for our list of
essential plugins.

All of these plugins – and thousands more – are ready for download at the
WordPress Plugin Repository. There are far too many plugins to discuss or even
review in this book. Besides, many of the plugins that are available in the Codex
replicate the functionality of other plugins (Google Analytics, anyone?) and are
ultimately extraneous. Many plugins are no longer maintained and may only
work with older versions of WordPress; and conversely, many newer plugins are
developed exclusively for current versions of WordPress and are not compatible
with older versions.

As you set off to load up on plugins, keep in mind that around 99% of WordPress
plugins are created by independent, third-party developers and are not always
tested or optimized for maximum performance. Many are superfluous, providing
functionality that is easily achieved by simpler methods. In fact, chances are high
that you may not even need a plugin to achieve your design and development
goals. Before reaching for that easy plugin fix, ask yourself if installing another
plugin is indeed the best solution.

5.1.4 Do You Need a Plugin?
Once you have determined a need to expand or enhance WordPress’ default
functionality, determine whether or not a plugin is required to get the job done.
With WordPress, there is generally more than one way of doing things, especially
when it comes to theme-related modifications, layout modifications, and display
features. For example, if you would like to display the date and time of the most
recent post modification, you could install a plugin to do the job, or you could
simply add the following slice of code to the desired location in your theme file:

<p>Updated on <?php $x = get_the_time('U'); $m = get_the_modified_time('U');
if ($m != $x) { the_modified_time('F d, Y'); } ?></p>

Post-Modified Date

What does this code snippet
do? It displays the date/
time that the post was last
modified. Just place into the
loop (perhaps along with other
metadata) and the “post-
modified” date and time will
be displayed. For more code
snippets that replace plugins,
check out this article at
Perishable Press:

http://digwp.com/u/415

http://digwp.com/u/415

134

Custom Query String

http://digwp.com/u/130

CQS enables you to specify the
number of posts to display for
different types of page views. For
example, this plugin makes it possible
to show 10 posts on your home page,
20 posts for your archive pages, 50
posts for your search results, and so
on. Without this plugin, all of these
page views would simply display
the number of posts specified in
the Admin area (under Settings >
Reading).

The Excerpt Reloaded

http://digwp.com/u/131

the_excerpt_reloaded enables
you to completely customize the
excerpts that are displayed on your
site. Provides control over excerpt
size, type, format, allowed markup
elements, and much more. This
level of control is perfect for
displaying excerpts in multiple or
customized loops.

Theme Switcher

http://digwp.com/u/132

Perhaps the most underrated plugin
of them all, Theme Switcher enables
multiple themes on your site. This is
useful for enabling users to choose
alternate themes, but it is even more
useful for developing themes behind
the scenes. When developing a new
theme, no need for fancy redirects
or “under construction” messages.
Simply install the plugin and then
use it to view your new theme for
development. Very useful.

There are many examples like these, where basic functionality involving category
icons, random images, and popular posts may be implemented with a few lines of
code. You may have to spend a few minutes searching for (or writing) that perfect
script, but doing so will save you from having to install and maintain yet another
unnecessary plugin.

Of course, the idea here is to keep the number of plugins to a minimum. By doing
so, you eliminate extraneous script processing and help to ensure optimal site

Useful Plugins for Theme Developers
Here are three plugins that we have found to be virtually indispensable for theme development:

http://digwp.com/u/130
http://digwp.com/u/131
http://digwp.com/u/132

135

performance. Minimizing the number of plugins used for your site also improves
the likelihood of smooth upgrades. The fewer third-party plugins you have
running, the less opportunity there is for something to go wrong while upgrading
to the latest version of WordPress. Likewise with plugin updates: the chances of
conflicts decrease with the number of plugins installed. It’s all about facilitating
upgrades, avoiding conflicts, and fostering maintainability.

On the other hand, there are many situations where plugins provide the perfect
solution. Here are some great examples of situations where installing a plugin is
the best solution:

• Complex scripting needs or when a suitable alternative is not readily available

• Functionality that affects the core functionality of WordPress, such as caching

• Extensive functional enhancement, such as database, sitemap, or
spam management

• Functionality that requires significant configuration of options and settings

• Enhancing administrative functionality with modified or additional admin areas

• You are uncomfortable editing code and would prefer doing things
the easy way

When it comes to these types of scenarios, choosing a plugin is most likely your
best bet. If so, do your research, find the best plugin for your needs, and give it
a go. As mentioned previously, there are thousands of free, easy-to-use plugins
available for immediate use. Regardless of your goals, there should be a plugin
that suits your needs perfectly.

136

5.1.5 Choosing the Perfect Plugin
The key to finding the perfect plugin is research. Taking the time to investigate
potential plugins ensures smooth implementation and prevents unnecessary
headaches in the future. Of course, many of the more popular plugins (such as
Akismet, XML Sitemaps, Database Manager) may be on your list before you even
install WordPress, but even so, you may be surprised at the growing number of
alternatives. Here are some tips to help you choose the perfect plugin:

1. Determine the need. What do you want the plugin to do for you?

2. Check the WordPress Codex. See if there are any suitable matches at the
official plugin repository. It is generally well-documented, well-organized, and
up-to-date.

3. Regardless of what you find at the Codex, search the Web for alternatives.
Many developers deliberately choose not to list their plugins at the Codex.
There are some great plugins that are only available directly from the author.

4. Check the compatibility of the plugin before installation. Make sure that it
works with your version of WordPress.

5. Check the support of the plugin. Is there a way of getting help if you need
it? Is there a forum? Does the author appear to be responsive?

6. Determine how frequently the plugin is updated. This may provide
clues as to the level of commitment that may be expected from the plugin
author. There is nothing worse than relying on a plugin that fails to evolve with
new versions of WordPress.

7. Is the plugin well-documented? Does the documentation explain
everything adequately? Is there a change log or history of changes for the
plugin?

8. Search the Web for specific issues related to the plugin. Dig for the stuff
that isn’t mentioned on the plugin page. Search for phrases such as “problem
with name-of-plugin,” “name-of-plugin issues,” or even “name-of-plugin
sucks.” Also research the performance of the plugin so it doesn’t slow
you down.

137

9. Check the files. Once you have found that perfect plugin, check its files
carefully. Look for anything that seems out of place. Are there extraneous files?
Is documentation included? Examples?

10. Check the code. If you understand PHP, (X)HTML, CSS, and/or JavaScript,
take a good look at the code and do your best to see if everything is legit.
Keep an eye open for anything that cries foul, such as spam links, unreasonable
licenses, and so on.

While you may not need to perform all of these steps for every plugin you use,
keeping these things in mind will help you to choose a perfect collection of plugins
for your site. Again, the key to maximizing your experience with a plugin involves
taking the time to research and understand its purpose and functionality.

5.2.1 Plugin Usage and Maintenance
Contrary to popular belief, plugins are not simply set-it-and-forget fixes for
WordPress. As convenient and easy as many plugins happen to be, most still require
initial configuration, periodic maintenance, regular updates, and occasional
troubleshooting and tweaking. In this section, we examine some helpful tips for
optimizing plugin usage and maintenance.

5.2.2 Sequential Installation
One of the best pieces of advice that we can give as you begin adding new plugins
to your WordPress site is to do so sequentially, one at a time. Installing your plugins
one at a time gives you the opportunity to test your site for proper functionality.
This enables you to know immediately if the plugin is compatible with your site
or not. Installing 20 plugins all at once only to discover afterwards that your site
is broken requires you to go back through each plugin, one-by-one, to determine
the source of the issue. Thus, you will save time, stress, and a big headache by
meticulously installing your plugins in an organized, sequential fashion.

Shady plugins

From time to time reports
surface of plugins that contain
malicious code. Most plugins
are completely fine, but always
keep an eye out for suspicious-
looking code. If you are not
sufficiently familiar with code
to know the bad stuff when
you see it, take some time to
research the plugin you are
about install. 99% of the
time you’re cool, but it’s better
safe than sorry.

138

5.2.3 Keep Plugins Up-To-Date
One of the best ways to ensure a smooth experience with your plugins is to
keep them up-to-date. The easiest way to stay current is to keep an eye on your
WordPress Admin area. Whenever an update for a plugin (or for WordPress itself)
is available, you will see a notice displayed on your various Admin pages. Once you
see that an update is available, there are essentially two ways to go
about upgrading:

Automatic upgrades

For versions of WordPress greater than or equal to 2.5, site administrators may
upgrade their plugins automatically by clicking on the plugin’s upgrade link on
the Plugin Admin page. WordPress 3.0 and beyond even has bulk updating to do
everything at once. For users of WordPress versions less than 2.5, the WordPress
Automatic Upgrade Plugin provides this same automatic-upgrade functionality and
much more. In either case, the point is that with automatic upgrades, there is no
excuse for not upgrading your plugins.

Manual upgrades

Taking the time to manually upgrade your plugins provides a much greater
degree of control over the entire process than possible with automatic methods.
Maintaining control over the upgrade process is especially important for plugins
that you may have customized, and also for expedient diagnosis and resolution of
any issues that may arise.

New versions of plugins often include new files, options settings, or changes to
existing settings that may interfere with normal site performance. Further, plugin
updates sometimes require complete un-installation of previous versions or even
additional steps in order for proper installation to occur. Manually upgrading your
plugins eliminates potential problems by giving you full control.

Know thy files

If you are automatically
updating your plugins and/or
core files through the Admin (or
any other method), it is wise
to remember that the files on
the server will be newer than
the ones on your local machine.
This may sound obvious, but
much confusion and many
errors may be avoided by
not overwriting updated files
with older ones. A good way
to prevent this is to either use
some sort of a version control
system (such as Subversion),
or else play it safe and go with
the manual-update method.

Automatic upgrading is only
for plugins hosted in the official
plugin repository. Another good
reason to list your plugin there.

139

5.2.4 Subscribe to Plugin Comment Threads
A great way to stay current with news relating to your plugins is to subscribe to
any relevant plugin feeds. Good candidates include comment and forum threads,
plugin-specific post feeds, and feeds from sites that primarily cover WordPress
plugins. You may want to create a folder in your feed aggregator called “My
WordPress Plugins” and review the results periodically.

5.2.5 Getting Help with Plugins
As you embark on the process of installing and configuring plugins, it is inevitable
that you will you encounter issues and conflicts that may be beyond your expertise
to resolve. Should this happen, the first place to go for help is to the plugin’s
developer or author. Most often, developers will leave a comment thread open
for their plugin pages, or else provide some sort of an official forum for handling
plugin-related issues.

If the problem is not resolved using these methods, don’t hesitate to contact the
plugin author directly. They created the plugin and thus should be more than
happy to help people with its implementation and use.

Other places to go for help include the WordPress.org site, where you may register
and ask WordPress-related questions in the forum. If you take this route, make
darn sure you have searched the Web and the WordPress forum as carefully as
possible. Many of the forum moderators have little patience for users who don’t
bother doing their homework before posting a question.

5.2.6 Diagnosing Plugin Conflicts
Diagnosing plugin conflicts is often easier than it may seem. Assuming that you
are installing your plugins sequentially (see above), problems that arise upon
installing or updating a plugin are easily spotted. Once you know which plugin is
causing the issue, you are in a better position to seek and find a solution. Many

It’s free for a reason

It is important to remember
that free help is just that – free.
Many WP newbies make the
mistake of expecting immediate
and perfect solutions when
asking for help. This just isn’t
the way it works. WordPress
heads enjoy helping people
learn, but make sure you take
the time to research the issue to
the best of your ability before
asking for assistance. Be clear,
polite, and remember to show
appreciation to those who take
the time to help you. It’s all
about karma ;)

140

times, a plugin that fails to work or causes errors is incompatible with another
plugin. To determine if this is the case, leave the new/upgraded plugin activated
and sequentially disable each of your plugins. After each plugin has been disabled,
check for resolution of the issue in question and continue the process until it is
resolved. If, after disabling all other plugins, your new/upgraded plugin still is
associated with issues, it may be incompatible with WordPress itself.

5.2.7 Disabling and Uninstalling Plugins
As you work with plugins, keep in mind that there is a difference between
disabling a plugin and uninstalling it. In general, disabling a plugin means that the
plugin is inactive yet still present in the plugins directory. More importantly, any
settings for disabled plugins are still present in the database. On the other hand,
when a plugin is uninstalled, it is no longer present in the plugins directory and any
related database settings have likely been deleted.

It is important to keep in mind that many plugins add information to your
WordPress database. Upon initial activation, plugins may modify or add
information to various tables, most typically the “options” table. New database
tables may be added and populated with data as well. Thus, as you go about
trying out new plugins, it is important to be aware of any changes made to your
database. A well-designed plugin will provide an uninstall feature that will clean-
up after itself and remove all traces of its settings from the database.

There may also be situations where you need to quickly disable one or more of
your plugins due to a conflict, troubleshooting, and so forth. While disabling
plugins is usually handled from within the Admin area, there may be situations
where this is not possible. There are several ways to disable plugins, but the
quickest and easiest method is simply to rename either the plugin (to disable
individual plugins) or the entire wp-content/plugins directory (to disable all
plugins). Renaming the plugin folder to, say, “plugins_inactive”, will effectively
disable (not uninstall) all of your plugins. Once you are ready to reactivate any
or all of your plugins, simply rename the directory back to “plugins” and you are
good to go. All of the options will be preserved, but you will need to reactivate
each plugin manually.

141

If you enjoy access to a database interface application such as the excellent
phpMyAdmin, there are many ways to interact with and modify the database
directly by simply executing various SQL commands. For example, after making a
backup of your database, execution of the following SQL command will enable you
to easily disable any or all of your plugins:

SELECT * FROM wp_options WHERE option_name = 'active_plugins';

Note that you may need to edit the default WordPress table prefix, “wp_”, if you
are using something different.

Once the active_plugins column appears, click to edit it. You will see something
similar to the following, depending on the number and type of plugins you have
installed:

a:31:{i:0;s:13:"AddMySite.php";i:1;s:19:"akismet/akismet.php";i:2;s:23:"all_in_
one_seo_pack.php";i:3;s:16:"authenticate.php";i:4;s:28:"breadcrumb-navigation-xt.
php";i:5;s:18:"codeautoescape.php";i:6;s:37:"contact-coldform/contact_coldform.
php";i:7;s:32:"custom-query-string-reloaded.php";i:8;s:30:"customizable-post-
listings.php";i:9;s:33:"dd-sitemap-gen/dd-sitemap-gen.php";i:10;s:20:"download-
counter.php";i:11;s:13:"feedcount.php";i:12;s:13:"full_feed.php";i:13;s:15:"get-
weather.php";i:14;s:36:"google-sitemap-generator/sitemap.php";i:15;s:13:"gravatars.
php";i:16;s:19:"kill-admin-nags.php";i:17;s:18:"landingsites13.php";i:18;s:30:"nofollow-
free/nofollowfree.php";i:19;s:17:"ol_feedburner.php";i:20;s:16:"plugins-used.
php";i:21;s:22:"popularity-contest.php";i:22;s:39:"search-everything/search_everything.
php";i:23;s:27:"simple-tags/simple-tags.php";i:24;s:26:"simple_recent_comments.
php";i:25;s:18:"simple_twitter.php";i:26;s:25:"subscribe-to-comments.php";i:27;s:24:"the-
excerpt-reloaded.php";i:28;s:18:"theme-switcher.php";i:29;s:9:"top10.php";i:30;s:16:"wp-db-
backup.php";}

That entire array of code represents every active plugin on your site. Thus, to
quickly disable all plugins without using the WP Admin area, highlight the entire
block of code, cut it out, and paste it into a safe, offline text file. After removing
the code, click the button to save your changes and that’s it. All WordPress plugins
are now deactivated (yet still installed, and with all plugin options intact). This
obviously is a huge time-saver that really comes in handy during those mission-
critical, time-sensitive situations where every second counts. Once you are ready to
re-activate your entire set of plugins, simply cut/copy & paste the preserved code
back into the “active_plugins” field. Click save and done. Again, don’t forget to
backup your database before editing it.

142

Or, instead of disabling the entire collection, you may selectively disable any of
your plugins by locating and removing its name from within the list. Here is the
general pattern once you format the code a bit:

a:31:{
 i:0;s:13:"AddMySite.php";
 i:1;s:19:"akismet/akismet.php";
 i:2;s:23:"all_in_one_seo_pack.php";
 i:3;s:16:"authenticate.php";
 i:4;s:28:"breadcrumb-navigation-xt.php";
 .
 .
 .
 }

So, to deactivate any plugin, simply remove its respective line from the list.
Alternately, here is a simple SQL query to disable all active plugins:

UPDATE wp_options SET option_value = ''
WHERE option_name = 'active_plugins';

Upon execution, this query will clear the active_plugins field of all active plugins,
effectively disabling (without uninstalling or modifying) the entire set. This method
is great if you plan on re-enabling each plugin individually, say, after resolving
some heinous server error. Whereas the previous technique makes it easy to re-
enable all plugins en masse, this query is perfect for simply “nuking” all active
plugins with no remorse.

143

5.2.8 Share Your Experience with Others

Finally, as you become familiar with and begin using WordPress plugins, it is
important to share your experience – either positive or negative – with the
community. If the topic happens to fit in at your site, throw down a few posts
describing any significant discoveries that you may have encountered with
your plugins.

You should also share important information with the plugin authors themselves
and, if the issue is not security related, perhaps even post the information on a
relevant forum, such as the one provided at WordPress.org.

The idea here is to give back to the community by sharing your insights and
experience in order to help users and developers better understand the plugins
they are working with.

5.3.1 Extending WordPress with
Custom Functions
Just because you can, doesn’t mean you should. As discussed in the previous
sections, there are many ways to extend the functionality of WordPress, especially
if you are familiar with and comfortable working with a bit of code.

There are many situations where your development and design efforts are better
served with WordPress’ amazingly convenient theme-specific script functionality,
also referred to as the theme’s “functions.php” file.

The purpose of the functions.php file is to provide developers and designers a way
to expand the functionality of WordPress on a per-theme basis. Each theme may
use a functions.php file to include any number of PHP functions and scripts. This
additional code is then processed when the theme is active, thereby extending the
functionality of WordPress as it relates to that particular theme.

The plugin directory allows
you to see if the plugin
version and your WordPress
version are going to work
together, according to reports by
real users.

144

5.3.2 Plugins vs. Theme Functions (via functions.php)
While both plugins and theme functions (i.e., scripts contained within the
functions.php file) may be used to extend the functionality of WordPress, there are
some key differences between the two:

• Locality - Plugins usually operate on a sitewide basis. Theme functions operate
only when the theme is active

• Updates - Plugins are usually updated periodically. Most theme functions
typically are not updated (depending on the theme – some themes are updated
regularly and may include changes to the functions.php file).

• Admin - Plugins are always shown in the Admin Plugins page. Theme functions
may or may not appear in the Admin Plugins page, depending on the function
or script.

Stop Nagging! – How to Disable the Update Nag
In the Admin area, WordPress will remind you when plugin or core updates are available. The plugin reminders appear only on the
Plugins page, but the update-WordPress reminders appear on every page. In general, these alerts are helpful, but they are rather
annoying. To stop the nagging, create a plugin file called “kill-admin-nags.php” and add the following code, and activate:

<?php /*
Plugin Name: KillNag
Plugin URI: http://perishablepress.com/
Description: Kill those annoying WordPress update nags.
Version: 0.666
Author: Jeff Starr */
add_action('admin_menu', create_function('$a', "remove_action('load-plugins.php', 'wp_update_plugins');"));
add_filter('pre_option_update_plugins', create_function('$a', "return null;"));
add_action('init', create_function('$a', "remove_action('init', 'wp_version_check');"));
add_filter('pre_option_update_core', create_function('$a', "return null;")); ?>

145

So when should you use a functions.php file instead of a plugin? While the answer
depends on many factors, here are a few general guidelines:

• Theme-specific functions should be placed in a functions.php file

• Custom theme functionality should be placed in a functions.php file

• Smaller scripts and functions should be placed in a functions.php file

• Sitewide functions should be implemented as a plugin (especially when multiple
themes are used)

• Functionality requiring an Admin interface regardless of theme should be
implemented as a plugin

• Fundamental changes in functionality should be implemented as a plugin

5.3.3 Useful Examples of Theme Functions
Way back in the days of WordPress 1.5, many developers had no idea that theme-
specific functionality was even possible. Many functional moderations were made
to the core of WordPress itself – something that you should never do, unless you
positively, absolutely have no other choice.

These days, the use of functions.php has revolutionized the way designers and
developers make functional changes without plugins. Here are a few examples
demonstrating the types of functions that are commonly placed in the
functions.php file.

146

5.3.4 Example #1: Easy Admin Buttons for Comments
In addition to managing comments through the WordPress Comments Admin area,
it is also helpful to have some easy admin buttons located next to the comments as
they appear on your blog. Here is an example of what we’re talking about:

Here is an easy way to add “spam” and “delete” links next to each comment
whenever you are logged in as Administrator. Having access to spam and delete
buttons next to each comment makes it super-easy to clean up missed spam,
scummy trackbacks, and other garbage. It is a good idea to continually scour old
posts’ comments to weed out junk, which is always easier to see from the actual
post pages themselves. Having quick and easy access to spam and delete buttons
has made my life considerably easier.

To add this functionality, we take advantage of the functions.php file by adding
the following script:

<?php // spam & delete links for all versions of WordPress

function delete_comment_link($id) {

 if (current_user_can('edit_post')) {

 echo '| <a href="'.get_bloginfo('wpurl').'/wp-admin/comment.php?a
ction=cdc&c='.$id.'">Delete ';

 echo '| <a href="'.get_bloginfo('wpurl').'/wp-admin/comment.php?a
ction=cdc&dt=spam&c='.$id.'">Spam';

 }

} ?>

Place this function in your theme’s functions.php file, and then call the function by
adding the following code to the desired location in your comments.php file:

<?php delete_comment_link(get_comment_ID()); ?>

147

And that’s all there is to it! Depending on placement of the function call, your
comments area should now feature quick and easy “spam” and “delete” buttons
next to each individual comment. Even better, this improved function is version-
independent, backwards-compatible, and thus will work for any version of
WordPress.

5.3.5 Example #2: Sitewide Shortcode Functionality
In short, WordPress shortcodes are shortcuts for frequently used content such as
links, images, and titles. As you blog, instead of writing out the entire link to your
homepage, for example, shortcodes enable you to simply write “[home]” anywhere
you would like the link to appear.

Of course, more complex shortcodes are possible, including shortcodes that include
varying attributes. This functionality is made possible thanks to a set of functions
called the Shortcode API that was introduced in WordPress 2.5. When a shortcode
is encountered, it is processed by the WordPress API and its associated functionality
is executed.

The easiest way to implement shortcode functionality is to specify your shortcodes
via the functions.php file. Here is a PHP function that will convert the [home]
shortcode into a link to your site’s homepage:

148

When you are building a theme, and the circumstance comes up
where you need to create a link to a specific page hard-baked
right into the theme, there is a function you should be using.

Not great

Contact

Much better

<a href="<?php echo get_permalink(12); ?>">Contact

That “12” would be the ID of the Post or Page. Why is
this better?

• If the slug ever changes, you are still cool.

 • If the site moves from a sub directory (like if you were
developing and then moving) to a top level domain or vice
versa, you are still cool.

Doing it this way is a permanent reference to that Post or
Page that will always be correct. This works great when we are
working within our theme files, but what about when we are
working within WordPress and actually writing Posts and Pages?

By default, we can’t run PHP within the content of our Posts
and Pages*, so we can’t use the get_permalink function. What
we can do, is create a shortcode with just about the
same functionality.

* If you need to run PHP inside Post content, check out this
plugin: http://digwp.com/u/465

function permalink_thingy($atts) {
 extract(shortcode_atts(array(
 'id' => 1,
 'text' => "" // default value if none supplied
), $atts));

 if ($text) {
 $url = get_permalink($id);
 return "$text";
 } else {
 return get_permalink($id);
 }
}
add_shortcode('permalink', 'permalink_thingy');

This shortcode can be used in two ways:

Basic

Using without providing text

Provide only the ID parameter and it only returns a URL. This
way you can use that URL however you want. For example, if
you needed to add a special class name to the link or something
(but only occasionally).

Providing text

[permalink id=49 text='providing text']

This way returns a fully formatted anchor link back, using the
text you pass.

Easy Shortcode Permalinks

149

<?php // shortcode for homepage link

function myHomePage() {

 return '<a href="http://domain.tld/"
 title="My Website Homepage">My Homepage';

 }

add_shortcode('home', 'myHomePage');

?>

Place this function in your theme’s functions.php file, and then call the function
by using the shortcode. Simply write “[home]” anywhere in your blog post and
WordPress will run the myHomePage function and display the link to your
homepage.

5.3.6 Example #3: Transferring Plugins to functions.php
As we have seen in the previous two examples, the functions.php file is perfect for
extending the functionality of WordPress. In addition to these types of functions,
we can also move entire plugins into the functions.php file.

One reason for doing this involves isolating the plugin’s functionality to a specific
theme. Plugin functionality affects all themes, whereas a functions.php file will
only affect its associated theme.

Transferring the contents of most plugins is as simple as copying and pasting
the contents into the functions.php file. Some plugins may require additional
modifications to work properly when relocated to the functions.php.

150

5.3.7 Example #4: Transferring Functions to a Plugin
Just as it is easy to transfer a plugin to a functions.php, it is also easy to create a
plugin from any functions.php function. For either of the two example functions
given above, we would simply copy and paste the contents into an empty PHP file
(named anything you like) and activate via the WordPress Admin area.

Before uploading to the server, we need to specify the plugin details at the
beginning of the plugin file. There are several pieces of information that are
required, as seen in this example for a plugin based on our shortcode functionality:

<?php
/*
Plugin Name: Easy Admin Buttons for Comments
Plugin URI: http://digwp.com/
Description: Provides easy comment moderation links.
Version: 1.0
Author: Digging into WordPress
Author URI: http://digwp.com/
*/
?>

After placing this code at the beginning of the plugin file, edit the information
appropriate to your plugin and you’re good to go. Generally we would prefer to
place simple functions in the functions.php file, but implementing them in plugin
format does have its benefits, including the ability to affect functionality across
multiple themes.

These examples and techniques are just the tip of the iceberg when it comes to the
wide range of functionality that may be implemented via your theme’s
functions.php file.

Of course, beyond plugins and theme functions, there are other ways to extend the
functionality of WordPress as well. Let’s take a look.

151

5.4.1 Other Ways to Extend
WordPress Functionality
So far we have explored the two most common ways of extending WordPress
functionality, namely, plugins and the functions.php file. In addition to these
methods, you may also implement custom functionality directly within your theme
template files.

5.4.2 Functions Within Theme Files
As discussed in the Themes Chapter of this book, theme template files contain
numerous template tags, PHP scripts, and (X)HTML markup. Within these files,
designers and developers may place just about any custom functionality they wish.

For example, the previous functions.php example for “Easy Admin Buttons” could
be placed directly within the theme file instead. Within the comment loop, we
could add the script as follows:

<p><?php comment_author_link(); ?><p>

<p><?php if (current_user_can('edit_post')) {

 echo '<a href="'.get_bloginfo('wpurl').'/wp-admin/comment.php
?action=cdc&c='.comment_ID().'">Delete';

 echo ' | <a href="'.get_bloginfo('wpurl').'/wp-admin/comment.php
?action=cdc&dt=spam&c='.comment_ID().'">Spam';

} ?></p>

<?php comment_text(); ?>

152

This setup will output the following markup, which will vary depending on the
actual content of your site:

<p>Author</p>

<p><a href="http://domain.tld/wp-admin/comment.php
?action=cdc&c=123">Delete | <a href="http://domain.tld/wp-admin/
comment.php?action=cdc&dt=spam&c=123">Spam</p>

<p>Hello, thanks for this article, it is exactly what I needed!</p>

The key to placing functions directly in your theme template files involves
removing the function declaration from the function itself.

Of course, this is just one example of a custom function that works well when
integrated directly into a theme template file. Another great example of this
involves just about any sort of custom loop functionality. The WordPress loop is the
core component of many theme files. Integrating custom loop functionality directly
into the loop itself is easier and simpler than trying to separate customizations
into a plugin or functions.php file. In other situations, it makes more sense to keep
snippets of custom functionality in theme files, if for no other reason than to keep
your templates clear and easy to understand.

5.4.3 Hacking the WordPress Core
And of course, last and certainly least, we arrive at the “forbidden” method of
extending WordPress, which is more accurately described as modifying default
WordPress functionality, aka “hacking the WordPress core.” Hacking the WordPress
core is nothing short of a heinous crime by today’s standards, but it remains an
effective way to achieve functionality not available through other, more legitimate
methods.

153

While some WordPress heads will argue that you should absolutely, positively
never hack a core WordPress file on any occasion or for any reason whatsoever and
forever and ever and ever, the truth is that there are some cases where getting
the job done is more important than following ideals and best practices. When
functional goals cannot be met with existing plugins and scripts, a solution may be
found in the editing of the WordPress core.

“What!?” I hear some purists freaking out right now, screaming loudly and shaking
their fists in opposition, “this is blasphemy against the WordPress gods!” But if
you think about it, there really is nothing sacred about the WordPress core. The
usual arguments against editing core files revolve mostly around the concept of
maintainability. WordPress is continually updated with patches, fixes, and new
versions. Thus, having a bunch of core edits to worry about reduces the ease of
which these updates are applied to your site, or so the thinking goes.

Regardless of the debate, there may be situations where you have no choice but
to hack a few lines of core code to do the job. So, rather than pretend that people
don’t do it, here are some tips for when you find yourself doing the “evil” deed:

Super-Easy Post-Thumbnails
Surfing the Web, you will notice that many blogs include a thumbnail image for each post. For example, at
DigWP.com, we attach a thumbnail to every post to help improve the user-experience for visitors. Before
WordPress version 2.9, including these post-thumbnails required use of custom-fields, but now with 2.9
and better, WordPress features a much easier way of doing it. To get started with post thumbnails, add the
following line of code to your theme’s functions.php file:

if (function_exists('add_theme_support')) { add_theme_support('post-thumbnails'); }

With that code in place, go to write or edit a post as usual in the Admin, and click on the “Set Thumbnail”
link in the “Post Thumbnail” panel. From there, select and tag your image from within the Media Library.
Then, to display your post thumbnails in your theme, add the following template tag within the loop:

<?php has_post_thumbnail(); ?> There is much more that can be done with WordPress' post-thumbnail feature. To learn
more about additional tags and ways to customize things, check out Chapter 11.2.7.

154

• Don’t hack the core unless you have absolutely no other option

• Do your research and understand exactly what you are doing

• Create a “read-me-before-updating” text file that details the changes

Bottom line: Before hacking the core, do your research, know what you are
doing, and make absolutely certain that no other options exist. Also, take good
notes and refer to them before every future WordPress upgrade. You never know,
you may actually learn something new from digging around under the hood!

5.5.1 WordPress as a Content
Management System (CMS)
As we have seen, the possibilities for extending WordPress functionality are
virtually endless. What began as a humble blogging platform called b2/cafelog way
back in 2001 is now robust and flexible enough to serve as a highly customizable
Content Management System (CMS).

One of the main distinctions between a CMS and a simple blog involves the
flexibility of the underlying software and its ability to create and manage multiple
users and various types of digital media, which may include everything from text
and images to audio and video content.

5.5.2 CMS Features Built Into WordPress
Out of the box, WordPress provides many features that help any number of users
publish and manage a wide variety of digital content, and with the addition of a
few key plugins, transforming WordPress into a fully functional CMS is a breeze.

In this section, we’ll first examine the CMS functionality that is built into
WordPress, and then explore some key plugins that take WordPress’ CMS
capabilities to the next level.

Update: WordPress 3.0

Check out Chapter 12 to learn
about all of the new CMS-
related functionality that is
now included with WordPress.

155

5.5.3 Working With Custom Fields
Perhaps the most powerful CMS-enabling feature included with WordPress is found
in its robust custom-fields functionality. WordPress Custom Fields enable users to
associate additional custom content and information with each Post. To better
understand how Custom Fields work, let’s consider a scenario where you would
like to associate thumbnail images with your posts. You could include the image
information along with the post text.

But this setup would force you to display the thumbnail along
with the post, in the exact order that it appears in the post
content. If you wanted to display the thumbnail outside of
the post, say in the sidebar, how would you go about it? Easy.
Custom Fields to the rescue.

By setting a custom field key named “thumbnail” with
a corresponding value of “http://domain.tld/images/
thumbnail-01.jpg”, we have associated the thumbnail
with our post in such a way that will enable us to display it
anywhere on the page.

With the custom fields added to our posts, we are now ready to tap into some core
WordPress functionality and display our custom post-images in the desired fashion.
The function we will be using to retrieve the custom images is get_post_meta(),
which is a native WordPress function designed to retrieve specific custom-field key
values. The get_post_meta() function takes the following three parameters:

$post_id - defines the post from which the custom-field
data is called

$key - defines the key of the desired custom-field meta
value

$single - specifies whether to return the data as a string or
as an array

Good

Using custom fields for post
thumbnails is the way to go.

Bad

Putting post thumbnails in the
content itself isn’t very flexible.

156

Plugged into the get_post_meta() function, these parameters look like this:

<?php get_post_meta($post_id, '$key', $single); ?>

To specify the ID parameter, $post_id, for each post, we use “$post->ID”, which
requires the function to be placed within the loop. For the $key parameter, we
will use the name of the target key, which in this case is “thumbnail”. And finally,
because we want the key value returned as a string, we use “true” for the $single
parameter. At this point our get_post_meta() function looks like this:

<?php get_post_meta($post->ID, 'thumbnail', true); ?>

And we are almost there. As is, this code will simply return the custom-field value
without printing it to the web page. So, we make one final edit to “echo” the data
to appear in the browser:

<?php echo get_post_meta($post->ID, 'thumbnail', true); ?>

When placed in the loop, this function will output each post’s “thumbnail” custom-
field value, which at this point is simply a URL to the specific thumbnail image. For
example:

http://domain.tld/path/custom-01.png

Not very useful for your visitors, however, by enclosing our function with a little
markup, we can easily transform that URL into an actual image that links to its
corresponding post:

<a href="<?php the_permalink() ?>" title="<?php the_title(); ?>">

 <img src="<?php echo get_post_meta($post->ID, 'thumbnail', true); ?>"
alt="Icon for Post #<?php the_ID(); ?>" />

157

Each post now includes its own custom icon that links directly to the single view of
the post itself, as seen in this screenshot of a recent post:

At this point, everything is set up, configured, and working great. We are
successfully displaying custom thumbnails that link to their associated posts.
Now, to demonstrate the usefulness of WordPress custom fields, let’s remove our
thumbnails from their respective posts and display them as a consecutive gallery
within the sidebar. So instead of displaying something like this in the main
posts column:

first post title

 first post content
 first thumbnail

second post title

 second post content
 second thumbnail

third post title

 third post content
 third thumbnail

…and so on…

158

Instead of using that layout, we’ll display the thumbnails separately in the sidebar:

 first thumbnail
second thumbnail
third thumbnail

Without using custom fields, it is practically impossible to segregate intra-post data
in this way. In other words, if we were to have included the custom-image URL
along with the main post content, there would be no practical way of separating
the information from the remainder of the post; they would always need to be
displayed together.

By placing the URL data within a custom field, we are able to display the custom
data wherever and however we wish. In our current example, we have sequestered
the thumbnail images into the sidebar.

The catch here is that our get_post_meta() function requires the loop in order
to work. Thus, to display our thumbnails in the sidebar, we will need to create a
secondary loop within the sidebar itself. Fortunately, we have a number of tools at
our disposal.

For this tutorial, let’s go with everybody’s favorite loop function, query_posts.
Without going into detail about the query_posts() function, suffice it to say that
it is an excellent way to create multiple, customized loops just about anywhere in
your design.

Here is the basic structure of our second loop:

<?php query_posts(); ?>

<?php if (have_posts()) : while (have_posts()) : the_post(); ?>

 // content goes here

<?php endwhile; endif; ?>

So, after placing that secondary loop into our sidebar, we embellish it as follows:

159

<?php query_posts('showposts=10&offset=0'); ?>

<?php if (have_posts()) : while (have_posts()) : the_post(); ?>

<a href="<?php the_permalink() ?>" title="<?php the_title(); ?>">

 <img src="<?php echo get_post_meta($post->ID, 'thumbnail', true); ?>"
alt="Icon for Post #<?php the_ID(); ?>" />

<?php endwhile; endif; ?>

As you can see, in the first line, we added two
parameters – the first specifies the total number of
loop cycles (ten, in our example), and the second
indicates that we want the loop to begin with the
most recent item (i.e., no offset). Beyond that bit
of voodoo, we simply copy-&-paste our previously
marked-up get_post_meta() function to replace the
line that says:

// content goes here

Once we upload our newly edited sidebar.php file
to the server, our web pages will feature the desired
result: a nice thumbnail image gallery respectively
linked to the ten most recent posts.

Of course, custom fields may be used to associate any
type of information with your posts. Custom field
functionality greatly facilitates the use of WordPress
as a CMS. Rather than placing all of the information
associated to a post into the “Write” field, Custom
Fields enable you to segregate and subsequently
display different types of content according to any
organizational structure.

160

5.5.4 Users, Roles and Permissions
WordPress provides excellent support for multiple users. Any WordPress-powered
blog is capable of supporting a wide range of different users, each capable of
performing a different set of roles. Users are basically anyone who has registered
for your site and has a user account. What actually defines a user, however, are the
different things that they are permitted to do. The things that users can do are
called “roles,” which by default include the following:

• Administrators - Admins have full access and privileges to everything.

• Editors - Editors may publish and edit posts and manage the posts of others.

• Authors - Authors may publish and edit their own posts, but not the posts
of others.

• Contributors - Contributors may write and manage their posts, but not
publish them.

• Subscribers - Subscribers are visitors who have registered with your site. Their
privileges are no different than those of the common visitor, but subscribers
have shown extra interest in your site by providing their information while
registering for your site.

Each of these roles may be given any number of specific permissions, or
“capabilities.” When applied to a specific role, capabilities enable all users of that
particular role to do things like post content, edit posts, moderate comments, and
so on. There is no limit as to which capabilities may be enabled for any particular
role. For example, you could give subscribers more capabilities than administrators.

The entire user-management system is extremely flexible, enabling you to
customize and configure your WordPress installation for the most complex
CMS applications. The multiple-user functionality is an essential component of
WordPress’ CMS capabilities, and may be enhanced further with a variety of
plugins, which we will explore a little later in the chapter.

True Subscribers

Even though subscribers don’t
have any real admin privileges,
they are still logged in and thus
the function is_user_logged_
in() will return TRUE.
This could be a way to give
registered users extra content.

161

5.5.5 Categorizing, Tagging, and Custom Taxonomies
WordPress also provides extensive organizational capabilities through the use of a
highly flexible system of categorizing and tagging. In a nutshell, categories may be
used to define content that is broadly associated, such as “movies,” “music,” and
“food,” while tags are used to associate finer distinctions, such as “tacos,” “pizza,”
and “cheeseburgers.”

Posts may belong to any number of categories, and then tagged along more
specific characteristics. For example, a post categorized under “movies” may be
tagged with “sci-fi,” “space,” “future,” and “aliens.” This level of organization
provides much more power over the structure of your site.

In WordPress 2.3, WordPress implemented a new “Taxonomy API” that changed
the way content is categorized and organized. Since then, users have been able
to create custom taxonomies to organize their content as effectively as possible.
The concept is a little difficult to grasp at first, but if you think of taxonomies as
“groups of tags” then you’ve pretty much got it. By default, WordPress organizes
your content with the following three taxonomies:

• category - used for classifying posts into categories

• post_tag - used for tagging posts with various tags

• link_category - used to classify links into categories

As you can see, the tags used for your posts belong to the “post_tag” taxonomy.
Likewise, the categories used for your posts belong to the “category” taxonomy,
and link categories belong to the “link_category” taxonomy. In general, the tags
and categories that belong to a taxonomy are called “terms.” Thus, your post
tags are all terms of the “post_tag” taxonomy, your categories are all terms of the
“category” taxonomy, and so on.

That’s great, but how does all of this new taxonomy mumbo-jumbo help us
use WordPress as a CMS? Basically, taxonomies provide yet another level of

Custom Taxonomies

We cover the “how” of custom
taxonomies in Chapter 2.4.7.

Update: also check out Chapter
12.2.6 for more information
on the new custom-taxonomy
functionality included in
WordPress 3.0.

162

classification and organization for your content. Once you create a new taxonomy,
you can add as many terms (tags or categories) for it as desired. Here is an example
of how this type of organization would be useful:

For a Web-development tutorial site, you could create taxonomies for “topics,”
“languages,” and “applications.” Then, each of these taxonomies would be given
a series of terms that applies to each post. So for example, a post on Ajax-powered
contact forms could be classified with something like this:

• Topics - ajax, forms, wordpress

• Languages - javascript, php, sql

• Applications - blogs, e-commerce

As you can imagine, this ability to organize your tags into taxonomies opens the
doors to new possibilities, and greatly increases your ability to structure your site in
elaborate, complex ways.

5.5.6 Page Templates
Page Templates enable you to apply custom design and functionality to your
different WordPress pages. This feature enables you to craft special pages that
will process and display content according to your specific needs. Consider the
following page types and how Page Templates are used with each:

• Search Page - display results in title-only list format and include a
search-term heading

• Archives Page - organize vast amounts of archived content with template tags
and multiple loops

• Tag Archives Page - display a tag cloud along with popular and recently
updated tags

Implementing custom Page Templates is easy. The default Page template in your

Custom Post Types

Update: for even more
flexibility in creating,
organizing, and displaying
custom-types of content, check
out WordPress’ new Custom
Post-Types functionality.
Learn more in Chapters
11.2.10 and 12.2.8.

163

theme is called “page.php”. If no custom page templates have been created, all of
your WordPress Pages will be displayed according to the default page.php template.
To create and use a new type of page template – for example, a template with no
sidebar and no title – simply create a file within your theme directory named
“page-nosidebar-notitle.php” and place the following code at the top:

<?php

/*

 Template Name: No Sidebar No Title

*/

?>

Then, navigate to the Search Page in the WordPress Admin
and select your custom Page Template as seen in the
screenshot to the right.

This new custom Search Page may now include any code
you desire – custom loops, search listings, and so on. This
same technique for creating a custom Search Page may
be used to create any number of unique page templates,
thereby facilitating a more flexible system for managing
your online content.

5.5.7 Page, Category, and Tag Hierarchies
Another awesome CMS-enabling feature of WordPress involves the ability of users
to create page, category, and even tag hierarchies (via “taxonomies”) whereby any
number and level of “child” items may be created for any given “parent” item.

You may create any number of first-level, “child” items, as well as any number of
subsequent-level items.

164

For example, for a page named “Contact” that is used for a sports-related website
may feature a parent-child page hierarchy that organizes contact data into logical
sections:

 Contact [first-level page]

 Swim Team [second-level page]
 Mary Poppins [third-level page]
 Tom Thumb [third-level page]
 Jack Horner [third-level page]
 Daisy Chain [third-level page]

 Soccer Team [second-level page]
 Nick Mason [third-level page]
 Rick Wright [third-level page]
 David Gilmour [third-level page]
 Roger Waters [third-level page]

 Chess Team [second-level page]
 Anakin Skywalker [third-level page]
 Han Solo [third-level page]
 Obi-Wan Kenobi [third-level page]
 Chewbacca [third-level page]

This parent-child functionality provides extremely flexible organizational
capabilities to WordPress users, enabling them to manage thousands of pages of
content quickly and easily.

This same logic is also available to the creation of subordinate categories and tags
(see previous section on “Categorizing, tagging, and custom taxonomies” for more
information).

165

5.5.8 Dynamic Menus
Every site needs a solid, well-structured navigational system, and for CMS-type
sites this is especially true. Fortunately, WordPress provides a number of powerful
functions that help users create just about every type of menu imaginable. Some
examples include:

• <?php wp_list_pages(); ?>
Automatically lists pages in just about every possible configuration imaginable.
You can control which pages are shown, limit the appearance of child pages, as
well as format page titles, customize links, specify sort order, and much more.

• <?php wp_get_archives(); ?>
Automatically lists yearly, monthly, and even daily archives for your blog.
Provides parameters to limit maximum number of items displayed, display
associated post count, and control the formatting of the list itself.

• <?php wp_list_categories(); ?>
Displays a list of categories that is completely customizable. There are
parameters for everything from excluding specific categories and specifying sort
order to inclusion of feed links control over category depth. Powerful stuff!

• <?php wp_tag_cloud(); ?>
Displays a collection of links, known as a “cloud,” for each tag used on your
blog. The relative size of each tag may be set based on popularity, or it may
be kept static for a more uniform-looking cloud. Several other customizable
features include displaying the tag links in random versus alphabetic order,
inclusion and exclusion of specific tags, and more.

As useful as some of this built-in navigational functionality happens to be, there is
always room for improvement. Here are a few of the many freely available plugins
that help improve and enhance WordPress’ default navigational system:

• WP-PageNavi http://digwp.com/u/133
Transforms archived page navigation into a row of links to all of your pages,
enabling users (and search engines) to access any archive page with a click.

Easy Custom Menus

Update: with version 3.0,
WordPress now provides
complete control over the
creation and display of your
menus, all from within the
comfort of the WP Admin.
See Chapter 12.2.7 for details.

http://digwp.com/u/133

166

• Breadcrumb NavXT http://digwp.com/u/134
Generates locational breadcrumb trails to help visitors where they are in the
grand scheme of things. The breadcrumb trails are highly customizable.

• Pagebar http://digwp.com/u/135
Adds a customizable menu bar to your blog posts, multi-paged posts and paged
comments. Automatic or manual configurations possible.

• Wordpress Navigation List Plugin NAVT http://digwp.com/u/136
Enables complete control over the creation, styling and contents of your site’s
navigation. Easy drag-n-drop interface makes menu customization a breeze.

• WP-dTree http://digwp.com/u/137
Generates navigation trees for your posts, pages, links and categories. Uses
WordPress’ built-in Scriptaculous library for awesome display effects.

• Sub Pages widget http://digwp.com/u/123
Displays the pages which are children from the current root page.

For more great navigational plugins, the WordPress Codex is a great place to start:
http://digwp.com/u/122.

5.6.1 Extending CMS Functionality
As we’ve seen, the built-in CMS functionality is great, but there are many ways to
improve upon it by implementing a few choice plugins. In this section, we’ll explore
some key plugins and explain how they may be used to take WordPress’ CMS
functionality to the next level.

5.6.2 CMS-Related Plugins
There are a ton of awesome CMS plugins available for WordPress. Here are some of
the best:

Breadcrumbs Rock

For large or complex sites,
breadcrumb navigation can
be a hugely beneficial part
of your site’s navigational
system. They help users orient
themselves within the site while
enabling quick and easy links
to other parts of the site.

http://digwp.com/u/134
http://digwp.com/u/135
http://digwp.com/u/136
http://digwp.com/u/137
http://digwp.com/u/123
http://digwp.com/u/122

167

Administration Tools

These plugins provide CMS-like functionality to the WordPress Admin area.

• WP-CMS Post Control http://digwp.com/u/55
Provides complete control over the Write-Page and Write-Post areas of the
WordPress Admin. Enables you to hide unwanted items, disable the Flash
uploader, kill post revisions, and even add a personal message.

• WP-CMS http://digwp.com/u/56
Transforms the Admin area to focus more on page creation and less on post
creation. Designed to simplify the whole process for your newbie clients. You
can even disable the blog functionality entirely.

• Flutter http://digwp.com/u/57
Enables you to edit posts without leaving the post page and also provides
custom write panels that enable further publishing functionality.

• Supple Forms http://digwp.com/u/58
 Enables you to create custom write panels, as well as format and insert values
into posts using shortcodes and snippets of HTML.

• Custom Write Panel http://digwp.com/u/59
Enables you to create additional write panels with customized input fields. Add
textboxes, checkboxes, radio-buttons, dropdown menus, and more.

User Role Management

• Members http://digwp.com/u/145
Comprehensive user-, role-, and content-management plugin that was created
to make WordPress a more powerful CMS. Provides more control over your blog
with an extensive collection of component-based features.

• Role Scoper http://digwp.com/u/60
Provides you the ability to specify different permissions levels for different
WordPress roles. Also provides options for implementing user groups.

http://digwp.com/u/55
http://digwp.com/u/56
http://digwp.com/u/57
http://digwp.com/u/58
http://digwp.com/u/59
http://digwp.com/u/145
http://digwp.com/u/60

168

• Disclose-Secret http://digwp.com/u/61
Enables you to hide specified posts from users unless they meet certain criteria.

• Page Restrict http://digwp.com/u/62
Enables you to restrict specified pages to logged-in users.

Navigation

• WPML http://digwp.com/u/63
Provides complete support for CMS-style navigation for your site. Includes
dropdown menus, breadcrumb trails, and sidebar navigation. The current
iteration of this plugin is actually much more full featured and helps turn sites
into multi-language sites, and all the navigational stuff is included.

• Breadcrumb NavXT http://digwp.com/u/64
Enables you to customize navigational breadcrumb trails for your site. This
plugin provides everything you will need to create the perfect breadcrumb menu.

Ordering, Filtering, Limiting and Displaying Content

• AStickyPostOrderER http://digwp.com/u/65
Enables you to customize post-display order for category views, archive views,
and even sitewide.

• Advanced Category Excluder http://digwp.com/u/66
Provides advanced content separation and category management for
WordPress. Exclude any number of categories according to your needs. Also
provides control over feeds and search results.

• Custom Post Limits http://digwp.com/u/67
Provides control over the number of posts that appear on the home page, in
various archive views, and in search results.

• Custom Query String (CQS) http://digwp.com/u/495
The ultimate (and original) plugin for controlling the number of posts displayed
on just about any type of page view possible, including archives, months,

http://digwp.com/u/61
http://digwp.com/u/62
http://digwp.com/u/63
http://digwp.com/u/64
http://digwp.com/u/65
http://digwp.com/u/66
http://digwp.com/u/67
http://digwp.com/u/495

169

categories, home page, search, and many more. For more information on CQS,
check out the popout on page 112.

eCommerce and Shopping Carts

• WordPress Simple PayPal Shopping Cart http://digwp.com/u/68
Displays an “Add to Cart” PayPal button to your posts and pages, shows the
contents of the cart, and even allows users to update/edit/delete any items.

• eShop http://digwp.com/u/69
Provides shopping-cart functionality that includes customizable product listings,
multiple product options, advanced payment options, basic statistics, and more.

• WP e-Commerce http://digwp.com/u/70
Provides an “elegant and easy to use fully featured shopping cart” that
claims to be the “most complete and powerful Shopping Plugin you will find
for Wordpress.”

• YAK for WordPress http://digwp.com/u/71
Provides basic shopping-cart functionality that associates products with
blog posts.

• Quick Shop http://digwp.com/u/72
Adds a sidebar widget that displays cart contents to the user and enables easy
item removal. Also enables you to easily add products to your posts and pages.

• Shopp http://digwp.com/u/73
Full featured shopping cart transformation for WordPress. This is a paid
premium plugin, starting at $55.

Email Mailing List and Newsletter Plugins

• WP-Campaign-Monitor http://digwp.com/u/74
Provides email newsletter and SMS functionality for WordPress. Enables users to
send campaigns, track results, and manage subscribers. Even includes a plug-n-
play sidebar widget.

http://digwp.com/u/68
http://digwp.com/u/69
http://digwp.com/u/70
http://digwp.com/u/71
http://digwp.com/u/72
http://digwp.com/u/73
http://digwp.com/u/74

170

• PHPList Form Integration http://digwp.com/u/75
Enables users to easily subscribe to your newsletter or RSS feed from any
page on your blog. Designed to work with PHPList, an excellent open-source
newsletter manager.

• WordPress Double Opt-In Manager Widget http://digwp.com/u/76
Enables users to subscribe to your mailing list by way of a double opt-in method
that includes the email form and a confirmation email.

• MailChimp http://digwp.com/u/466
MailChimp is a third-party email newsletter sending service. They have an
official plugin to help integrate with WordPress.

Language Translation

• WPML CMS http://digwp.com/u/77
Transforms your WordPress-powered site into a “fully featured multilingual
content management system.”

• Sunday Morning http://digwp.com/u/78
Not WordPress-specific, but a pretty interesting JavaScript method for
translating content on-the-fly, utilizing Google Translator

Comprehensive CMS Transformation

• Pods http://digwp.com/u/79
Provides comprehensive CMS functionality for WordPress, enabling you
to create, manage, and display custom content types. Enables automatic
pagination, public-form filtering, access control, menu editing, and much more.

Miscellaneous CMS Plugins

• ProjectManager http://digwp.com/u/80
Enables you to manage any number of projects with recurrent datasets. Great
for portrait systems, music and DVD collections, and just about anything else
imaginable.

http://digwp.com/u/75
http://digwp.com/u/76
http://digwp.com/u/77
http://digwp.com/u/78
http://digwp.com/u/79
http://digwp.com/u/80

171

• WP-PostRatings http://digwp.com/u/81
Enables users to rate your post content. Highly customizable. One of the best.

• TDO Mini Forms http://digwp.com/u/82
Provides highly customizable forms that enables non-registered users to submit
their own posts and links to your site.

5.6.3 Using WordPress as a Forum
Although forum functionality is not currently built into the WordPress core,
implementing a forum on your site is easily accomplished with the help of these
awesome plugins.

• bbPress Forum http://digwp.com/u/119
bbPress is simple, fast, and elegant forum software from the same people who
make WordPress. bbPress is focused on web standards, ease of use, ease of
integration, and speed.

• WP-Forum http://digwp.com/u/147
A simple discussion forum for WordPress that provides some basic forum
functionality. The author of this plugin provides free help via support forum
linked to from the plugin page.

Script and Style

Script & Style is a WordPress powered site that
features links to Design and Development related
articles. Links can be submitted by anybody via a
form powered by TDO Mini Forms

More Forum Plugins

Here are two more useful
forum plugins for WordPress:

Tal.ki Embeddable Forums
http://digwp.com/u/472

Zingiri Forum
http://digwp.com/u/473

Both include great features and
look like great forum solutions.

http://digwp.com/u/81
http://digwp.com/u/82
http://digwp.com/u/119
http://digwp.com/u/147
http://digwp.com/u/472
http://digwp.com/u/473

172

• Simple:Press Forum, aka Simple Forum http://digwp.com/u/148
A feature-rich forum plugin for WordPress that fully integrates into your
WordPress-powered site. Fully customizable and includes plenty of skins and
icons to get you started.

5.6.4 Integration with Third-Party Forum Applications
While some of these packages offer almost the same in terms of functionality as
the major stand-alone forum packages out there, many do not. If you want to
combine WordPress with a stand-alone, third-party forum application, here are
some good ways to go about doing it:

• Integrating phpBB with WordPress http://digwp.com/u/150

 The phpBB forum application is widely used and heavily documented. There are
many plugins, extensions, and modifications available, and there is plenty of
documentation to help with implementation, customization and maintenance.

 There are a couple of great ways to integrate phpBB with WordPress. The first
is WP-United http://digwp.com/u/151, which is free and easy to set up and includes
many options for complete customization.

 Another great tool is the WP-PHPBB WordPress plugin http://digwp.com/u/152,
which provides simple integration of phpBB with WordPress. The only downside
to this plugin is that phpBB must use the same database as WordPress.

• Integrating Invision with WordPress http://digwp.com/u/153

 The Invision IP.Board is a for-purchase community discussion forum that
provides many great features including a default theme, report center,
reputation system, friendly URLs, and much more.

 One of the best ways to integrate IP.Board with WordPress is the InvisionBridge
Wordpress-IPB Bridge http://digwp.com/u/154, which combines login systems and
includes some useful options in the free version and extra options in the
paid version.

http://digwp.com/u/148
http://digwp.com/u/150
http://digwp.com/u/151
http://digwp.com/u/152
http://digwp.com/u/153
http://digwp.com/u/154

173

• Integrating vBulletin with WordPress http://digwp.com/u/155

 vBulletin is a professional, affordable community forum solution used by many
industry-leading companies. Its key features include fast, efficient database
backend, template-driven interface, powerful search engine, language system,
custom user-fields, and much more.

 Integrating vBulletin with WordPress is accomplished very easily with the
vBulletin plugin and the instructions available at vbulletin.org http://digwp.com/
u/156.

• Integrating SMF with WordPress http://digwp.com/u/157

 The SMF (Simple Machines Forum) is a free, professional-grade forum software
package that allows you to set up your own online community within minutes.
SMF uses a powerful, custom-made template engine that puts you in full control
of the message-board layout using unique server-side includes.

 Features include advanced permission and user-management, multiple-
language support, built-in security features, multiple authentication options,
and tons more.

 The easiest way to integrate SMF with WordPress is to use the WordPress SMF
Bridge plugin http://digwp.com/u/158, which combines login systems and enables
cross-posting of threads, display of SMF statistics, and other useful features.

5.6.5 Multiple Blogs with WordPress MU
Prior to WordPress 3.0, you could use a separate set of software called WordPress
MU http://digwp.com/u/159 to operate multiple blogs off the same single installation.
Now, with WordPress 3.0, this functionality is built right into the core software and
is called MultiSite. Features of WordPress MU include:

• All of the great functionality and features of regular WordPress installations

• Robust scaling to tens of millions of hits per day

http://digwp.com/u/155
http://digwp.com/u/156
http://digwp.com/u/156
http://digwp.com/u/157
http://digwp.com/u/158
http://digwp.com/u/159

174

• Virtually unlimited numbers of users and blogs

• Advanced permissions systems enabling different permissions for different blogs

• Shares 99% of the same codebase as WordPress

To learn how to setup and use WordPress 3.0’s new MultiSite functionality, check
out Chapter 12.2.5 to get started.

But wait, there’s more…
Truly, there is no end to the ways that WordPress can be extended. In this chapter,
we have seen how to extend WordPress with plugins, theme files, custom
functions, and the advanced functionality available in WordPress itself. Yet even
with all of the possibilities explored thus far, there is still another powerful way
to extend your site’s potential. WordPress’ powerful content-syndication system
enables you to share your content with the farthest reaches of the Internet…

175

hMAG is a great example of
how WordPress can be used
to build a site that trancendes
mere blogging. This is a fully
blown multi-author news and
membership based community
site loaded with content. Not to
mention very cleanly designed.

http://h-mag.com

176

When I am working on a problem, I

never think about beauty. I only think

about how to solve the problem. But

when I have finished, if the solution isn’t

beautiful, I know it is wrong.

– R I C H A R D B U C K M I N S T E R F U L L E R

6.1.1 Working with RSS Feeds

6.1.2 Quick Introduction to Feeds
One of the coolest things about using WordPress to power your site is the dynamic
nature by which it organizes and generates content. Every post or article that you
publish on your site is stored in a MySQL database on your server. WordPress then
employs the PHP language to dynamically manipulate your database content to
form individual posts, pages, and various types of feeds. Whereas a WordPress blog
displays posts in sequential fashion on the home page and in various archive views,
a WordPress feed displays posts in sequential fashion in specially formatted feeds.

6.1.3 Dynamic Publishing and Content Distribution
In a nutshell, feeds enable subscribers to see in their feed readers the same content
that is displayed on your blog. Each time you publish a new post, it appears
simultaneously on your blog and in your WordPress feeds, which are formatted
for use by third-party feed readers. This functionality has revolutionized the way
content is delivered on the Web: instead of people having to visit your site to read
your content, they can simply open their feed reader and read all of the latest
articles from all of their favorite sites. The ease of this technology makes it easier
to stay current with a much larger volume of information.

Working with RSS Feeds6

177

178

6.1.4 The Pros and Cons of Delivering
RSS Feeds
Just like with your actual website, anyone may visit and
subscribe to your feed. This ease of access and convenience
is a double-edge sword, however, especially for sites that
depend on advertising revenue for sustainability and
profit. Many people will not bother clicking through to
your site if they are getting all of your content directly
from your feed. Fortunately, there are some good ways to
handle this situation, which we will explore later on in this
chapter.

With millions of blogs out there constantly generating
new content, feeds enable users to stay current with a

personalized collection of niche sites suited just for them. For site owners and
content producers, however, there are a few considerable challenges associated
with feeds:

• Loss of site traffic, fewer click-throughs, visits, et al.

• Loss of brand identity because of feed-reader uniformity

• Stolen content due to unscrupulous spammers and scrapers

Before addressing these various issues and some available solutions, let’s review
some of the different types of feeds available for WordPress-powered sites.

6.2.1 Different Types of WordPress Feeds
WordPress provides users with a wide variety of different feeds. There are feeds for
just about every type of page-view, feeds for categories, feeds for tags, and even
feeds that are customizable, including or excluding specific tags or categories. The
possibilities are truly endless, especially when you consider that WordPress provides

Don’t use relative links
in your blog posts!
Relative links look like this, “/path/to/file.html”, and
may function properly from within your posts, but
they will break when included in your feed. Because
feeds are distributed on other domains, relative
URLs for links and images will assume an incorrect
base URL. If you are unable to avoid relative URLs
on WordPress blogs, use a plugin such as URL
Absolutifier http://digwp.com/u/84, which filters the
feed content and converts any relative URLs to their
absolute counterparts.

http://digwp.com/u/84

179

Choose Your Feed Reader!
QUICK REVIEW OF SOME POPULAR FEED-READER CHOICES

There are many feed readers available to choose from, including online services,
mobile applications, and even desktop software. While all of these different readers
do essentially the same thing – aggregate and display your favorite feeds – there
are some key differences that you should consider. Let’s check out some of the more
popular choices.

Google Reader http://digwp.com/u/160
Millions of people use Google Reader. It is super-easy, fast, and provides many
options, including the ability to “star” favorites, “like” posts, and even “share”
feed items on your own website. Highly recommended.

Bloglines http://digwp.com/u/162
Free and easy online feed aggregation service for searching, subscribing, creating,
and sharing news feeds, blogs, and rich web content. Many features and fully
customizable, including full support for mobile browsers and multiple languages.

NewsGator http://digwp.com/u/163
Award-winning desktop-based RSS reader that comes in a variety of flavors:
Windows, Mac, and iPhone.

Thunderbird http://digwp.com/u/164
The powerful open-source email client is also an extremely powerful feed reader.
Supports just about any feed format you can throw at it, and makes subscribing,
managing, and reading feeds a real breeze.

Firefox http://digwp.com/u/165
The world’s best browser makes it super-easy to stay current with all of your
favorite sites. Using Firefox’s Live Bookmarks feature, you can automatically keep
track of your feeds and know instantly when any of them are updated.

Of course, this list is just the tip of the iceberg when it comes to feed readers. A quick
search on your favorite search engine will provide many more great options.

http://digwp.com/u/160
http://digwp.com/u/162
http://digwp.com/u/163
http://digwp.com/u/164
http://digwp.com/u/165

180

many of these feeds in a multiple formats. Sounds overwhelming until you see
the pattern of feeds and formats. Understanding the different types of WordPress
feeds is important to running the best site possible. Let’s explore the different
types of WordPress feeds.

6.2.2 Posts Feed
Your site’s Post feed or main content feed is the primary source of content for
subscribers. Unless specified otherwise with a plugin or custom script, each post
that you create through the WordPress Admin will appear in your site’s Posts feed.
Only post content appears in the main posts feed. It is available automatically here:

http://domain.tld/feed/

Most sites serve their main content feed as their site’s primary feed. By default,
it contains everything that is posted on your site, thereby making it easy for
subscribers to stay current with all of your content.

6.2.3 Comments Feed
Your site’s Comments feed includes a chronologically ordered display of all
comments left on your site. Unless told to do otherwise, all author comments
and all guest comments are included in the main comments feed. It is available
automatically here:

http://domain.tld/comments/feed/

Many sites also provide visitors with a link to subscribe to their comments feed.
Typically, you will see links and/or icons for both the “main posts feed” and the
“main comments feed” appearing next to one another. Providing these two feeds
makes it easy for your readers to stay current with all of your content and all of
your visitor’s comments.

181

6.2.4 Individual Post Comments Feed
For each post on your site that enables people to leave comments, there is a
corresponding feed that people may subscribe to in order to stay current with the
conversation. Each Post Comment Feed includes all of the comments left on that
particular post. Here is an example:

http://domain.tld/2009/10/billy-mays-fan-club/feed/

When people leave comments on one of your posts, they can stay current with
follow-up comments by subscribing to the Post-Comment Feed for that particular
post. As useful as this method is, however, I think more people prefer to subscribe
to comment updates via email. See the popout in 6.3.1 for more information.

6.2.5 Category and Tag Feeds

In addition to the useful types of feeds discussed above, each individual Category
and Tag archive on your site features its own feed. Each of these feeds includes all
of the post content for its respective Category or Tag. Here is the general format
for each type:

http://domain.tld/category/football/feed/

http://domain.tld/tag/football/feed/

Category and tag feeds are extremely useful for providing topic-focused content
to your subscribers. Sites that cover more than one particular niche may provide a
feed for each particular topic, which may be more useful to readers than receiving
news that is of no interest. Another good example for a category-specific feed is
seen in the case of “Side Blogs,” “Asides,” “Mini Updates,” or whatever they’re
called these days. Many bloggers keep a category set apart for posting brief
thoughts, small snippets of news, links, and so on. A category-specific feed is
perfect for enabling your subscribers to stay current with your “side” ramblings.

182

6.2.6 Other Feed Types
There are also many other types of feeds that are automatically generated
from your WordPress-powered site. There are feeds for each different author,
chronological archives, and even pages.

Many of these types of feeds are rarely seen in the wild, but they do exist and are
available should you decide to use them.

In addition to your post, comment, category, and tag feeds, WordPress provides
several other types of feeds, including:

• Author feed - http://domain.tld/author/blake/feed/

• Yearly archives - http://domain.tld/2009/feed/

• Monthly archives http://domain.tld/2009/10/feed/

• Daily archives - http://domain.tld/2009/10/30/feed/

• Page feed - http://domain.tld/about/feed/

In these generalized examples, you would replace “domain.tld” with your domain
name, and then select an author name and/or specific date(s).

List Category Feed Links with a Nice Feed Icon
Here is a nice way to provide your visitors with a list of all your category feeds. Very useful if you have a lot of categories that have
their own feeds. All we need is the wp_list_categories() tag and a few parameters:

<?php wp_list_categories('feed_image=http://digwp.com/feed-icon.png&depth=1'); ?>

This will output a nice list of all your parent-level categories along with a feed link icon next to each. Remember to use your own
path for the feed image! For complete information on customizing this highly flexible tag, see the Codex http://digwp.com/u/86

Page Feeds

Pages do create feeds, but
unless you have comments
enabled on that page, it usually
doesn’t make sense to offer
visitors a feed link for a page.

http://digwp.com/u/86

183

6.3.1 Feed Configurations
and Formats
Just as there are many different types of feeds, there are also
many different types of feed formats. Each of the different feeds
mentioned above is automatically generated in a variety
of flavors:

• RSS 2.0
Owned by Berkman Center, the RSS 2.0 format is extensible
via modules and is recommended for general-purpose,
metadata-rich syndication.

• RSS 1.0 / RDF
Owned by the RSS-DEV Working Group, the RSS 1.0 format is
based on RDF, extensible via modules, and recommended for
RDF-based applications.

• RSS 0.92
Owned by UserLand, the RSS 0.92 format allows for richer
metadata than its 0.91 predecessor. This version is now
obsoleted by version 2.0.

• Atom
Created by leading service providers, tool vendors and
independent developers, Atom is an XML-based document
format designed to be a universal publishing standard for personal content and
weblogs.

Several years ago, choosing the best format to provide on your site was very
important. Different feed readers accepted only certain formats, and the war was
raging to see which format would finally win out. Fortunately, we no longer need
to worry about which format to use because all of the most popular feed readers
provide support for virtually all different feed formats. Many of the sites that we
visit and interact with continue to deliver their feeds in RSS-2.0 format. The Atom

Subscribe to
Comments!
Enable your visitors to stay
current via email
The easiest way to stay current with comment
threads is to “subscribe to comments via
email.” This functionality isn’t included with
WordPress by default, but is easily added with
Mark Jaquith’s excellent plugin, Subscribe to
Comments http://digwp.com/u/85.

Once installed, Subscribe to Comments
provides a checkbox next to your comments
that enables users to receive email notifications
of any updates to that particular comment
thread.

Once subscribed, users will receive a simple
plain-text email notifying them of the new
comment, as well as links to manage their
email subscriptions for that particular site.
Unsubscribing at any time is as easy as clicking
a few links.

http://digwp.com/u/85

184

format also has a loyal following, but is nowhere near as popular as
the RSS 2.0 format.

With all of these different formats, how does one distinguish
between them? The answer is found in the URL structure of each
particular type of feed. Here are a few examples of the general
structure of the different feed formats for the Main Content Feed:

• RSS 2.0 format - http://domain.tld/feed/

• RSS 2.0 format - http://domain.tld/feed/rss2/

• RSS 0.92 format - http://domain.tld/feed/rss/

• RDF/RSS 1.0 format - http://domain.tld/feed/rdf/

• Atom format - http://domain.tld/feed/atom/

This same basic pattern applies to all of the different types of
WordPress feeds. Unless a particular format is appended to the
end of the feed URL, the format is RSS 2.0. Otherwise, the format
is determined by the particular “/format/” appended to the feed
URL. For example, here are the various feed formats available for a
hypothetical “Coffee” category:

• http://domain.tld/category/coffee/feed/

• http://domain.tld/category/coffee/feed/rss2/

• http://domain.tld/category/coffee/feed/rss/

• http://domain.tld/category/coffee/feed/rdf/

• http://domain.tld/category/coffee/feed/atom/

And so on. Now that we are familiar with the myriad feed options
provided by WordPress, let’s dig into the configuration and

Feed URL
Canonicalization
Perhaps you’ve noticed that, for every
feed on your site, there are two versions
of the feed in the popular RSS 2.0 format.
The first RSS-2.0 format is available when
no specific format name is appended to
the feed URL. The second RSS-2.0 format
is available when the “/rss2/” format
name is appended to the feed URL.

To simplify this duplicity, you may want
to “canonicalize” your RSS-2.0 feed.
Canonicalization is the process of ensuring
that each feed is available only at a
specific URL. In general, canonicalization
is good for SEO, statistics, and usability.
Here is a quick HTAccess trick for ensuring
that your RSS-2.0 feed is always delivered
via the “http://domain.tld/feed/” URL:

RedirectMatch 301 \/rss2\/ http://
domain.tld/feed/

Just add that rule to your site’s web-
accessible root .htaccess file and test the
results. Of course, there are many more
canonicalization tricks at your disposal,
and we cover some of them on page 306.

185

optimization of your site’s feeds. Once you have your site set up and a few posts
published, the first thing you need to decide is whether to deliver “full feeds” or
“partial feeds.”

6.3.2 Full Feeds
Within the WordPress Admin (under Settings > Reading), there is an option to
generate “full” feeds or “partial” feeds. By setting your feeds to deliver partial
content, each post item in your feed is truncated according to either a specific
number of characters, the presence of a post excerpt, or the location of the “read-
more” (“<!--more-->”) tag.

On the other hand, configuring your site to deliver full feeds basically means
that you want your feed to include the entire content for each of the posts that
you publish. While this certainly makes your feed more attractive to potential
subscribers, it also invites greater opportunity for abuse. Many unscrupulous
“scraper” sites on the Web make money by subscribing to full feeds, displaying
them on their own sites, and placing advertisements next to them. Many other sites
simply steal your content outright to pass off as their own work.

Of course, there is another downside to providing full-content feeds. People are
less likely to click through to your site to read the article when they can enjoy the
entire thing in the comfort of their own feed reader. Fewer click-throughs means
less traffic. Less traffic, in general, is not a good thing, especially if you need your
visitors to translate into advertising revenue. Further, as they are not clicking
through to your site, they are seeing less of your unique site design, logos, and
other branding influence.

Nonetheless, many people swear by the “full-feed” format. The reasoning behind
this involves the argument that feeds are all about ease of distribution and open

Truncated Feeds?

Older versions of WordPress
had a problem where feeds
would be truncated at the
<!--more--> tag even when
the full feeds option was
checked. If this is happening
to you, 1) upgrade WordPress,
or if you can’t, 2) use this
plugin:

http://digwp.com/u/87

Full Feeds

Configuring full feeds is easy! Simply go to Settings > Reading in
the Admin area, click on the Full-text option and save the changes.

http://digwp.com/u/87

186

sharing of content. As soon as you begin to restrict this core functionality, you
detract from the benefits feeds provide while appearing manipulative and miserly.
In other words, providing full feeds is generally seen as a very cool thing to do;
while partial feeds on the other hand …not so much.

6.3.3 Partial Feeds
While many people live and die by the full-feed method, there remain unavoidable
issues involved with doing so. Fortunately, many, if not all, of the previously
discussed difficulties are easily resolved by simply providing only partial feeds to
your visitors. Partial feeds typically feature only the first few sentences of each
post, or else display any explicitly defined excerpts included with each post.

This format requires readers to actually click-through and visit your site if they
decide the post is something they would like to read in its entirety. Thus, in visiting
your site, traffic levels rise and advertising revenue may proportionally increase.

Of course the other major benefit to only serving partial feeds is that scrapers
and content thieves will have no real use for your content. They don’t waste time
displaying partial feeds on their illicit sites, and the scrapers are generally too lazy
to do anything that can’t be automated.

The bottom line when it comes to displaying full versus partial feeds is that it all
depends on your specific needs. If you are more concerned about ad revenue than
being seen as someone who “gets it,” then partial feeds are most likely the way
to go. Conversely, if your goal is to produce and share your content with as many
like-minded subscribers as possible, then you don’t want to short-change them by
providing anything less than the “full”-meal deal!

Partial Feeds

Configuring partial feeds is just as easy. Simply go to Settings > Reading
in the Admin area, click on the Summary option and save the changes.

187

6.3.4 Number of Posts
While configuring your feed for either full or partial post display, you should also
consider the number of posts included in your feed. In the WordPress Admin,
under Settings > Reading, you will see two fields, “Blog pages show at most…”
and “Syndication feeds show the most recent…”, which enable you to specify how
many posts should appear on your home page and in your feed, respectively. These
numbers may be the same or completely different.

Here you may set any number of posts for
your feed – this may be different than the
number set for your archive posts.

Note that when it comes to your feeds, the
number of posts specified in the WordPress
Admin applies to every feed produced by
your site, including comment feeds!

6.3.5 WordPress Feed Formats

WordPress Post-feed formats for permalinks

If you have permalinks enabled on your site, your Posts feed is accessible via the
following URLs:

http://domain.tld/feed/ - RSS 2.0 format

http://domain.tld/feed/rss2/ - RSS 2.0 format

http://domain.tld/feed/rss/ - RSS 0.92 format

http://domain.tld/feed/rdf/ - RDF/RSS 1.0 format

http://domain.tld/feed/atom/ - Atom format

Finding Balance

When choosing the number
of posts to display on your
home and archive pages, try to
find the right balance between
providing plenty of content
and delivering speedy web
pages. Too much content can
slow things down for users
with slow connections, but not
enough content can leave your
site looking empty.

If you host your own RSS
feeds (rather than use
something like FeedBurner)
also consider balance. The
more articles you show in
your feed, the more bandwidth
intensive serving that feed is.

188

WordPress Post-feed formats for default URLs (non-permalink)

By default, your Posts feed is accessible via the following file-based URLs (even
when you have permalinks enabled):

http://domain.tld/wp-rss2.php - RSS 2.0 format

http://domain.tld/wp-rss.php - RSS 0.92 format

http://domain.tld/wp-rdf.php - RDF/RSS 1.0 format

http://domain.tld/wp-atom.php - Atom format

WordPress Post-feed formats via query string (non-permalink)

Alternately, your Posts feed is also available at the following query-string-based
URLs (even when you have permalinks enabled):

http://domain.tld/?feed=rss2 - RSS 2.0 format

http://domain.tld/?feed=rss - RSS 0.92 format

http://domain.tld/?feed=rdf - RDF/RSS 1.0 format

http://domain.tld/?feed=atom - Atom format

Display default Post-feed URLs

To determine/display the default posts feed URL for your blog’s main content, place
any or all of these template tags into a useful location in one of your theme files:

<?php bloginfo('rss2_url'); ?> - RSS 2.0 format

<?php bloginfo('rss_url'); ?> - RSS 0.92 format

<?php bloginfo('rdf_url'); ?> - RDF/RSS 1.0 format

<?php bloginfo('atom_url'); ?> - Atom format

189

WordPress main comments feed

Your blog’s main comments feed is available only in RSS 2.0 format, but there are
several URL options from which to choose:

http://domain.tld/comments/feed/ - Permalink format

http://domain.tld/wp-commentsrss2.php - Default file-based format

http://domain.tld/?feed=commentsrss2 - Query-string format

Display main comments feed URL

To display the default URL for your main comments feed, add this template tag to
your theme file and load the page in your browser:

<?php bloginfo('comments_rss2_url'); ?>

Post-specific comment feeds

By default, every post also delivers its own feed featuring all of its comments. To
display feed URLs for individual, post-specific comment feeds, place this template
tag anywhere in the main post loop or comment loop:

<?php comments_rss_link('Subscribe to comments on this post via RSS'); ?>

Alternately, to display the comment-feed URL for any specific post, simply append
either of the following to the original post URL:

feed/ - Permalink format
?feed=rss2 - Default format

Here is an example of each method for a generalized post URL:

http://domain.tld/individual-post/feed/ - Permalink format

http://domain.tld/individual-post/?feed=rss2 - Default format

What is my Feed URL?

For a complete online reference
of all available WordPress
feed formats, types, and
possibilities, check out this
article:

http://digwp.com/u/380

http://digwp.com/u/380

190

When using default (non-permalink) URLs, the post-specific comment feeds are
available via the following format:

http://domain.tld/?feed=rss2&p=123

…where “p=123” references the post ID.

Category Feeds

To display individual category feed URLs, use either of the following formats:

http://domain.tld/category/categoryname/feed/ - Permalink format

http://domain.tld/wp-rss2.php?cat=33 - Default format

Whew! As you can see, WordPress provides a ton of feed formats and
configuration options. And these are just the standard formats available by
default. Later in section 6.6.5, we’ll show you how to rig up just about any
feed imaginable.

6.4.1 Using FeedBurner For Feed Delivery
There are many ways to track your feed statistics. Perhaps the most popular
method of doing so involves the free feed-delivery service provided by FeedBurner
http://digwp.com/u/166. Millions of site owners and bloggers redirect their feeds
to FeedBurner, which in turn delivers the feeds to all of your subscribers. In the
process of delivering your feed, FeedBurner maintains an excellent set of statistics
for many aspects of your feeds.

We use and recommend FeedBurner for all of our feed-delivery needs, so we want
to take a moment to discuss why it’s cool, how to use it, and some of the awesome
things that it can do.

http://digwp.com/u/166

191

6.4.2 Benefits of Using FeedBurner
Perhaps the best reason to use FeedBurner is its immense popularity. With millions
of users, the chance of FeedBurner closing shop is next to nil. Further, FeedBurner
belongs to Google since 2007, and it is unlikely that anyone will be snatching it
from their able hands. To be sure, Google has dropped the ball a few times for
their FeedBurner service, but the issues are usually resolved within a bearable
amount of time (it could be better), and with Google, you know that there are
always people around to fix things when they break.

If that wasn’t quite convincing enough, let us just emphasize the vast amount
of data that is collected by FeedBurner. Everything that you could want to know
about your feeds is available to you from an elaborate user-interface in your
FeedBurner account’s Admin area. Here is a rundown of some of the best features
that are available when you host your feed(s) at FeedBurner:

• Awesome analytical tools - Comprehensive subscriber statistics, click-
throughs, and many other key statistics for your feed

 • Integrated Adsense advertising - Google makes it easy to manage and
monetize your feeds with Adsense

 • Universal feed delivery - FeedBurner’s SmartFeed formats your feed to work
perfectly with virtually any feed reader

 • Tons of optimization options - FeedFlares, Link Splicing, Geotagging, and
many more savvy optimization tools

 • Great tools to publicize your feed - Headline animator, Email subscriptions,
feed branding, and everything else you need to help spread the word

 • Easy exportation of data - You can export your feed stats via Excel or CSV
file for easy analysis with your favorite spreadsheet or statistical software

Even better, FeedBurner is simple to set up and use, tracks everything
automatically, is easily configurable, and costs absolutely nothing. Sure there
are periods of downtime, but so far these have been few and far between, with
consistent and reliable FeedBurner service being the norm.

192

6.4.3 Setting Up and Configuring a FeedBurner Account
To “burn” your feed using the FeedBurner service, you must do the following:

• Register for a Google account (a single account may host multiple feeds)

• Enter the URL of the feed that you would like to burn

• Pick a FeedBurner feed URL for each of your feeds

• Redirect your original feed URL to its corresponding FeedBurner counterpart

For the last step – redirecting your feed to FeedBurner, there are several options,
including redirecting via plugin, HTAccess (or Apache configuration file), or PHP.
Let’s take a look at each of these methods.

6.4.4 Redirecting to FeedBurner via Plugin
Two great options for redirecting your feeds to FeedBurner are the Feedsmith
plugin – http://digwp.com/u/167 (direct download link, zip file) – and the FD FeedBurner
plugin – http://digwp.com/u/168. Either of these plugins do a good job at automatically
redirecting your site’s main feed and, optionally, your main comments feed.

As Easy as it Gets

Installing and using the
Feedsmith plugin is a no-
brainer: simply enter your feed
URL(s) in the plugin options
section and click save. Nothing
more to do – everything else
happens automagically behind
the scenes.

http://digwp.com/u/167
http://digwp.com/u/168

193

Simply install either plugin, navigate to the plugin options page, and enter your
FeedBurner feed URL(s) in the fields provided. Once done, save the options and
check that everything is working as expected.

6.4.5 Redirecting to FeedBurner via HTAccess
One of the limitations of using a plugin to redirect your site’s feeds to FeedBurner
is the lack of customization and configurational control over which feeds are
redirected. By default, either of the currently available FeedBurner-redirect plugins
will redirect all of your WordPress feeds to your FeedBurner URL. For multi-topic
or multi-author blogs, this may prevent you from delivering topic-specific feeds to
your readers.

For example, what if you wanted to redirect your individual category feeds to their
corresponding FeedBurner counterparts? With these plugins, this is not possible.
Fortunately, we can use Apache’s powerful HTAccess directives to get the job done
quickly and easily.

To see an example of how HTAccess enables a more flexible collection of feed
offerings, let’s assume the following hypothetical collection of WordPress/
FeedBurner feed URLs:

• Main feed: http://domain.tld/feed/
=redirects to=> http://feeds.feedburner.com/main-feed

• Comments feed: http://domain.tld/comments/feed/
=redirects to=> http://feeds.feedburner.com/comments-feed

• “Business” category feed: http://domain.tld/category/business/feed/
=redirects to=> http://feeds.feedburner.com/business-feed

• “Pleasure” category feed: http://domain.tld/category/pleasure/feed/
=redirects to=> http://feeds.feedburner.com/pleasure-feed

• “Nonsense” category feed: http://domain.tld/category/nonsense/feed/
=redirects to=> http://feeds.feedburner.com/nonsense-feed

194

Currently, there is not a plugin that will handle this scenario, but by placing the
following Apache directives into our site’s root HTAccess file (or httpd.conf file) we
can get the job done quite easily:

Notice that the first two RewriteCond directives redirect your main feed and
comments feed to their respective FeedBurner URLs. Simply edit the specified
FeedBurner URL in both of these lines to your actual FeedBurner URLs. After
that, the next three RewriteCond directives redirect each of our three hypothetical
category URLs to its respective FeedBurner URL. For each of these lines, edit both
the category name and its associated FeedBurner feed URL according to your actual
values.

Further, including additional categories is as easy as replicating one of the last
three RewriteCond directives. Copy and paste a new line, edit accordingly, and
done! Likewise, to remove any unnecessary category feeds, simply use the lines
that are needed and delete the others. Thus, if you only want to redirect your site’s
main and comments feeds, your code would look like this:

<IfModule mod_rewrite.c>

 RewriteEngine on

 RewriteCond %{HTTP_USER_AGENT} !^.*(FeedBurner|FeedValidator) [NC]

Redirect Wordpress Feeds to FeedBurner
<IfModule mod_rewrite.c>
 RewriteEngine on
 RewriteCond %{HTTP_USER_AGENT} !^.*(FeedBurner|FeedValidator) [NC]
 RewriteRule ^feed/?.*$ http://feeds.feedburner.com/main-feed [L,NC,R=302]
 RewriteRule ^comments/?.*$ http://feeds.feedburner.com/comments-feed [L,NC,R=302]
 RewriteRule ^category/business/feed/?.*$ http://feeds.feedburner.com/business-feed [L,NC,R=302]
 RewriteRule ^category/pleasure/feed/?.*$ http://feeds.feedburner.com/pleasure-feed [L,NC,R=302]
 RewriteRule ^category/nonsense/feed/?.*$ http://feeds.feedburner.com/nonsense-feed [L,NC,R=302]
</IfModule>

195

 RewriteRule ^feed/?.*$ http://feeds.feedburner.com/main-feed [L,NC,R=302]

 RewriteRule ^comments/?.*$ http://feeds.feedburner.com/comments-feed
[L,NC,R=302]

</IfModule>

With that code in place (and properly edited), your server will redirect all requests
for your blog’s Posts Feed and Comments Feed to their respectively associated
FeedBurner URLs. All other types of feeds (tag feeds, individual post-comment
feeds, author feeds, etc.) will not be affected and will appear as normal when
requested. And the best part? With this HTAccess method, there is no need to
install an additional plugin – this method takes care of everything you need to
redirect your feeds properly.

6.4.6 Redirecting to FeedBurner via PHP
If the thought of using HTAccess to redirect your feeds makes your skin crawl, don’t
sweat it – here is an alternate version for redirecting your feeds to FeedBurner
using good ‘ol-fashioned PHP.

1. Add the following code to your active theme’s functions.php file:

function custom_feed_link($output, $feed) {

 $feed_url = 'http://feeds.feedburner.com/your-feedburner-feed';

 $feed_array = array(
 'rss' => $feed_url,
 'rss2' => $feed_url,
 'atom' => $feed_url,
 'rdf' => $feed_url,
 'comments_rss2' => ''
);

 $feed_array[$feed] = $feed_url;

Look Ma, No Plugin!

To redirect your feeds to
FeedBurner without using a
plugin, copy the code featured
on this page and paste it into
your site’s root .htaccess file.
This snippet of code gets the
job done without any PHP
processing from the server.

Credit

Thanks to Justin Tadlock for
sharing this PHP-redirection
technique with the WordPress
Community!

http://digwp.com/u/88

http://digwp.com/u/88

196

 $output = $feed_array[$feed];

 return $output;

}

add_filter('feed_link','custom_feed_link', 1, 2);

2. Edit the $feed_url with the URL of your FeedBurner feed.

Once in place, this code will redirect all of your site’s main feeds – in all formats –
to your corresponding FeedBurner counterpart. Additionally, you may also redirect
other types of feeds as well. For example, here is the code used (in your functions.
php file) to redirect your category, author, tag, and search feeds as well:

function other_feed_links($link) {

 $link = 'http://feeds.feedburner.com/your-feedburner-feed';

 return $link;

}

add_filter('category_feed_link', 'other_feed_links');

add_filter('author_feed_link', 'other_feed_links');

add_filter('tag_feed_link','other_feed_links');

add_filter('search_feed_link','other_feed_links');

This code may be customized according to your specific needs. For example, if
you only need to redirect your category feeds, simply delete the three other
add_filter lines in the code. Likewise, if you need to add additional feed types,
simply replicate one of the add_filter lines and specify the feed type in the first
PHP parameter. Whatever you do, remember to test, test, test that everything is
working properly.

The <link>

While this code doesn't redirect
feeds in the sense of literally
changing the URL being
accessed (the other methods
do), it does change the <link>
element which is what tells
browsers and feed reading
applications where the RSS
feed lives.

197

6.5.1 Tracking and Displaying
Feed Statistics
Once you get your feed established and properly configured, you will want to
begin offering it to your visitors. There are many ways to do this, including text
links, image links, and even FeedBurner badges that display the total number of
subscribers for your feed. Along with the number of subscribers for your site, the
free FeedBurner service also keeps track of many other types of statistical data.
From subscriber count and click-throughs to user reach and page hits, FeedBurner is
your one-stop resource for in-depth feed analysis.

6.5.2 Types of Statistics Provided by FeedBurner
As discussed above, FeedBurner provides some great tools for managing,
optimizing, and tracking your feeds. Here are some of the statistics provided
by FeedBurner:

• Subscribers counts – daily totals and chronological history

• Feed reader applications that are used to access your feed

• Uncommon uses, including re-syndication

• Reach – the unique number of people who view or click your feed content

• Item views – tracking of access to specified feed items

• Item link clicks optimized for complete item use or search engine ranking

• Item enclosure downloads, including podcast downloads

As you can see, FeedBurner tracks just about everything you may need to know
about your feed. Many of these statistics are included automatically with your
account, but others are “opt-in” and require you to activate them. Fortunately,
FeedBurner makes managing, using, and exporting your feed stats as pain-free

198

as possible, with everything fully accessible and configurable from within your
account’s Admin area.

6.5.3 Displaying FeedBurner Statistics
By far, one of the most popular uses of FeedBurner statistics is the public display
of a feed’s subscriber count. There are many ways to display your subscriber count,
including those little rectangular badges frequently seen in the sidebars of blogs
and sites around the Web. These free “chicklets,” as they’re called, are delivered by
FeedBurner and configurable via the FeedBurner Admin area.

Depending on your site’s design, however, you may prefer to display your
subscriber count in a way that better suits your specific design. Fortunately, there
are alternate, “text-only” ways of displaying your subscriber count, thereby
enabling you to display the number with the appropriate (X)HTML and CSS. Here
are two methods of displaying your subscriber count in plain text, enabling you to
markup and style the information in any way you wish and integrate it easily into
your design.

Method 1: Use PHP to display FeedBurner subscriber count

Using FeedBurner’s Awareness API and a bit of PHP, it is possible to display your
FeedBurner subscriber count as plain text. Here’s how to do it in three easy steps:

1. Open your sidebar.php theme file and add the following code to the location
 where you would like to show off your subscriber count:

<?php

$feed = "https://feedburner.google.com/api/awareness/1.0/
GetFeedData?uri=digwp";

$curl = curl_init();

curl_setopt($curl, CURLOPT_RETURNTRANSFER, 1);

FeedBurner Chicklets

You can choose animated and
non-animated chicklets, as well
as customize the colors used.

199

curl_setopt($curl, CURLOPT_URL, $feed);

$feed = curl_exec($curl);

curl_close($curl);

$xml = new SimpleXMLElement($feed);

$feedburner = $xml->feed->entry['circulation'];

echo $feedburner;

?>

2. Replace the term “digwp” in the first line with the username of your
 FeedBurner account.

3. Done! Markup and style the plain-text subscriber-count output as desired and
 enjoy the results.

Method 2: Use a plugin!

If you would rather just jump in and use a plugin to display your FeedBurner stats,
Francesco Mapelli’s excellent Feed Count plugin (see side note) does the job very
well. The plugin is a snap and provides all the functionality needed for customized
text-display of your subscriber count. With the plugin’s text output of your feed
stats, it is possible to echo virtually any message or markup you wish to embellish
your data.

6.5.4 Alternatives to FeedBurner
During the writing of this book, all FeedBurner accounts were transferred to
Google. During this process, an enormous percentage of FeedBurner users
experienced a sudden, drastic decrease in the number of reported subscribers.
This was very upsetting to say the least, and led many people to begin exploring
alternatives to the now-questionable FeedBurner service.

“Are there any alternatives to FeedBurner?” We encounter this question

Feed Count Plugin

Unfortunately, at the time of
this writing, the Feed Count
web page was marked as an
“attack site.” So, until the
author resolves the issue, we
have made the plugin available
through our site at this URL:

http://digwp.com/u/378

To the Streets!

The FeedBurner problems
made a lot of folks angry
and was documented by
TechCrunch here:

http://digwp.com/u/90

http://digwp.com/u/378
http://digwp.com/u/90

200

As awesome as it is, the Feed Count plugin can’t work when
the FeedBurner data is unavailable. Despite its best intentions,
FeedBurner occasionally returns inaccurate data for the
subscriber count. For those of us who care about the accuracy of
our publicly displayed feed statistics, displaying information like
this on your site is simply unacceptable:

Join N/A awesome subscribers!

…or perhaps even worse:

Join 0 awesome subscribers!

Ugh. Clearly not the way to leave a good impression and
encourage visitors to subscribe to your feed. Fortunately, we
have an excellent fallback mechanism to ensure that all visitors
see the correct subscriber information. Begin by placing the
following script in your active theme’s functions.php file:

<?php
 function feedcount_fallback() {
 if(function_exists('fc_feedcount')) {
 ob_start();
 fc_feedcount();
 $count = ob_get_contents();
 ob_end_clean();
 if($count == 'N/A' || $count == '0') {
 echo 'many other';
 } else {
 echo $count;
 }
 } else {
 echo 'many other';
 }
 }
?>

Once that code is in place, replace the default Feed Count
function call with this in your theme’s template file:

<p>Join <?php if (function_exists('feedcount_fallback'))
feedcount_fallback(); ?> awesome subscribers!</p>

Once in place, that code will output one of the following
messages, depending on availability of accurate FeedBurner
subscriber-count data:

When the subscriber count is correct:

“Join 243 awesome subscribers!”

And when the subscriber count is either “N/A” or “0”:

“Join many other awesome subscribers!”

How does this script work? Basically, we are using PHP’s output
buffering functionality to capture the output value of the
fc_feedcount() function and compare it to the two possible
error values (“N/A” and “0”).

When the error values are detected, the alternate, fallback
message is displayed; otherwise, the function displays the
correct count value.

Plus, as an added bonus, the function covers your bases by
outputting the fallback message in the event that the Feed
Count plugin itself should fail. This method ensures proper
subscriber count display without relying on the availability
of JavaScript, the accuracy of FeedBurner data, or even the
functionality of the Feed Count plugin!

More information at Perishable Press: http://digwp.com/u/89

Prevent FeedBurner Errors with a Fallback Mechanism

http://digwp.com/u/89

201

repeatedly every time FeedBurner drops the ball. Until recently, FeedBurner was
pretty much it for delivering feeds and keeping track of statistics. This is one of the
reasons why just about everybody is using FeedBurner – the competition has been
scarce. Fortunately, some promising FeedBurner Alternatives are finally gaining
some traction:

• FeedBlitz http://digwp.com/u/91
FeedBlitz has been around as long as I can remember and should have been in
the feed-delivery/tracking game from the beginning. Even so, better late than
never with their new RSS delivery service.

• RapidFeeds http://digwp.com/u/92
RapidFeeds publishes and monitors your RSS feeds for free. Looks relatively new
but very promising.

• FeedStats http://digwp.com/u/93
FeedStats is designed to track the total number of people who are subscribing
to your various feeds. The total number of subscribers takes into account
different feed formats, such as RDF, RSS, and Atom.

• Feed Statistics http://digwp.com/u/94
In addition to tracking your daily subscriber count, the Feed Statistics plugin
also monitors and reports information about which feed readers are being
used to access your feeds, as well as data on Post Views, Top Feeds, and Click-
throughs – all within the convenience of the WordPress Admin.

6.6.1 Customizing Feeds
Once your feed is up and running, there are many ways to customize its
appearance and functionality. If you are using FeedBurner, there are many
different ways to style and present the feed to your visitors. Yet even without
FeedBurner, there are many great ways to improve the appearance and
functionality of your WordPress feeds. Let’s take a look at some popular and
useful modifications.

http://digwp.com/u/91
http://digwp.com/u/92
http://digwp.com/u/93
http://digwp.com/u/94

202

It is a classic CSS sin to use inline styling. It completely defeats
the purpose of using CSS, which is to separate content from
design. If we wanted to call special attention to a box on the
page, it would be smart for us to do something like:

<div class="callout">
 ... content ...
</div>

When we publish our content with RSS as WordPress does,
people won’t be viewing our content on our website, but in
whatever they use to read RSS content. This could literally be
anywhere, but a classic example would be a reader reading
through Google Reader. In the Google Reader environment,
our special class of “callout” has no meaning whatsoever. On
our own website, callout might mean it has some extra padding

and a yellow background, but in Google Reader, it will have no
effect at all.

If we want to make that extra padding and yellow background
come through over RSS, we can force it by using inline styling.

<div style="padding: 15px; background: #fff3c4;
 margin: 0 0 10px 0;">
 ... content ...
</div>

Just remember that inline styling is generally regarded as evil
for a reason… if you ever needed to change the styling, you’d
have to go back into every single Post that used it, instead of
being able to just change the CSS for “callout.”

Inline Stylin’ for RSS

Inline styling in the Post

Result in RSS reader

203

6.6.2 Formatting Feed Images
Images, as in elements, are by default
“inline” elements. That means despite them having a width and a
height, they don’t break lines and kind of just go with the flow of
the text around it.

In your theme, the CSS might be taking charge and changing this
default inline behavior. It is possible that images are set to block
level elements in your stylesheet, which forces line breaks before
and after them. Or the images could have special classes applied to
them which float them left or right so text wraps around them. But
unfortunately, your CSS doesn’t mean anything when the Post is
being read through an RSS reader. Those images will revert to their
old inline-level selves.

One classic way of avoiding this problem is making sure you have
an extra line break above and below the image tag when creating/
editing your Post. Here is a screenshot demonstrating this technique:

The nicely floated image in this TechCrunch article
reverts to a non-floated inline image in the RSS feed
and is rather awkward.

The empty lines above will ensure that the top paragraph, image, and
bottom paragraph will all be automatically wrapped in <p> tags without
implicitly using them.

204

One of the (slightly weird and confusing) things that WordPress does is
automatically apply
 tags into posts where a single return was used, and
automatically apply wrapping <p></p> tags to blocks of content separated by
double line-breaks.

The end result is that this image tag separated from other content by double line-
breaks on either side will now be wrapped in paragraph tags, which are by default
block-level elements. This effectively makes your image a block level element, and
will prevent any weird text wrapping.

Another option is to use inline styling on the images, for example:

This will be effective on the site and through the RSS feed, with the major
shortcoming that should you ever need to update this styling you’ll have to return
to this post and manually alter it (rather than a sweepingly simple CSS change).

6.6.3 Adding a Custom Feed Image
Out of the box, WordPress feeds are very plain. Apart from any images that your
posts or comments may include, your WordPress feeds appear without any logos
or branding images. A great way to enhance your site’s brand is to add a custom
image to your feeds. Here’s how to do it:

1. Add the following code to your theme’s functions.php file:

function mwp_feedImage() {
 echo "";
}
add_action('rss2_head', 'mwp_feedImage');

2. Edit each of the different XML elements to reflect your site’s information.

3. That’s it! Save, upload and check out your new custom-branded RSS feed!

Add custom image to Atom feed

For Atom feeds, the process is very similar:

1. Add this code to your functions.php:

function mwp_atomImage() {
 echo "
 <icon>http://digwp.com/images/favicon.ico</icon>
 <logo>http://digwp.com/images/feed-icon.png</logo>
 ";
}
add_action('rss2_head', 'mwp_atomImage');

2. Edit each of the different XML elements to reflect your site’s information.

3. All done! Save, upload, and check out your new custom-branded Atom feed!

Alternately, FeedBurner users may add a feed image to any of their feeds by using
the “Feed Image Burner” feature available in their account admin area.

Branding is Key

Presenting a strong brand identity
is a key part of your site’s success.
Customizing your feeds with your logo is
an excellent branding opportunity.

206

6.6.4 Include Comments in Feeds
While WordPress excludes post comments from feeds by default, certain sites may
benefit from including them. The easiest way to do so is to mashup a quick feed
pipe at the free Yahoo! Pipes service http://digwp.com/u/169. Sounds complicated, but
it’s really simple. Here’s how to do it in ten easy steps:

1. Sign into Yahoo! Pipes with your Yahoo! ID.

2. From the “Sources” menu in the left sidebar, drag an instance of the “Fetch
Feed” badge to the working area.

Merging Feeds

As seen in this section, Yahoo!
Pipes is an excellent way to
merge multiple feeds into a
single feed, but it’s not the only
mashup service that does so.
Another good service is RSS
Mix, which you can check out
at http://digwp.com/u/172

http://digwp.com/u/169
http://digwp.com/u/172

207

3. Add your Post Feed and Comments Feed to the “Fetch Feed”
badge. Click the plus “+” sign to get another input field.

4. From the “Operators” menu in the left sidebar, drag an
instance of the “Sort” badge to the working area.

5. In the “Sort” badge, select the “item.pubDate” option and
sort in descending order.

6. You should have three badges at this point: “Fetch Feed,”
“Sort,” and “Pipe Output,” which was added to the working
area automatically.

7. Connect the three badges by connecting the circles on the
upper and lower edges (see screenshot on previous page).

8. Click the “Refresh” button in the debugger window below
the working area to see the output of the piped feed.

9. To save your feed, click “Save” in the top-right area of the
screen and name your new pipe. After saving is complete, click
“Run Pipe” at the top of the screen. A new window will then
open with configuration options and so forth.

10. Once everything is properly configured, click “Publish”
to make it official. The URL of your RSS-formatted feed is
available by clicking the “Get as RSS” link next to the feed
icon.

That’s all there is to it! You now have a shiny new feed that
contains your posts and comments in chronological order. Of
course, there is much more you can do with the incredibly
awesome Yahoo! Pipes service, so feel free to experiment and
have some fun. By the way, you can check out the DiW Posts and
Comments feed used for this tutorial at http://digwp.com/u/170.

http://digwp.com/u/170

208

6.6.5 Creating Custom Feeds
There are many situations in which the default WordPress feeds simply won’t do.
For example, you may have a category or group of categories that you would like
to exclude or include in your main site feed. Fortunately, WordPress provides plenty
of special feed parameters that enable you to carefully craft the perfect custom
feed.

Exclude categories, authors, and more from feeds

Here is the general format for excluding content such as specific categories,
authors and so on:

http://digwp.com/feed?cat=-n

Here we need to change “n” to the category ID for which we want to exclude.
After doing so, our RSS feed will include all content except for that from the
specified category. Likewise, we can exclude multiple categories like so:

http://digwp.com/feed?cat=-x,-y,-z

Here we would replace “x”, “y”, and “z” with the three categories of our choice.
Similarly, additional categories may be added by simply adding an additional “,-n”
to the end of the query string.

Likewise, we may exclude specific authors, dates, and much more by simply
replacing the “cat” parameter and its corresponding value(s) with any of the
following parameters:

• author=-n - excludes all posts posted from the Author with ID of “n”

• year=-2009 - excludes all posts published in the specified four-digit year

• monthnum=-11 - excludes all posts published in the specified month number

• day=-22 - excludes all posts published on the specified day

Subscribe to Your Own!

During the process of
setting up a new feed, it is
always a good idea to grab
a subscription for yourself.
Adding your feed to a few
different feed readers is a great
way to keep an eye on your
feed and ensure that it is
looking good.

209

• paged=-33 - excludes all posts contained on the specified archive page

• s=-wordpress - excludes all posts containing the search term “wordpress”

• category_name=-wordpress - excludes all posts in the “wordpress” category

You can also consolidate date-based custom-feed restrictions using the special “m”
parameter:

http://digwp.com/feed?m=2009 - excludes content from 2009

http://digwp.com/feed?m=200907 - excludes content from July, 2009

http://digwp.com/feed?m=20090707 - excludes content from July 7th, 2009

You may also combine these parameters to generate custom-fit WordPress feeds.
Here are some examples:

http://digwp.com/feed?cat=-11&s=-apple

This would generate a feed that excludes category #11 as well as any posts
containing the term “apple.”

http://digwp.com/feed?cat=-11&year=-2008&author=-3

This would generate a feed that excludes category #11, excludes posts from 2008,
and excludes posts written by author #3. As you can see, the pattern is simple:

.../feed?parameter01=value01¶meter02=value02¶meter03=value03

As you can see, each parameter-value pair is concatenated via the “&” symbol.

If modifying your feed URLs is not your preferred way of excluding categories from
feeds, you may want to check out the Ultimate Category Excluder plugin from
Michael Clark http://digwp.com/u/171.

http://digwp.com/u/171

210

Excluding categories via functions.php

Apart from URL-modification or using a plugin, it is also possible to exclude
categories and other parameters from your feeds by placing the following script in
your theme’s functions.php file:

// exclude categories from feed

function excludeCatsfromFeed($query) {

 if ($query->is_feed) {

 $query->set('cat','-x,-y,-z'); // excluded categories

 }

 return $query;

}

add_filter('pre_get_posts','excludeCatsfromFeed');

Once in place, go ahead and edit the “x”, “y”, and “z” to match the IDs of the
categories you wish to exclude. You may also add or remove categories, or even
exclude other items by replacing the “cat” parameter in the third line with any of
the available query parameters discussed previously.

This function makes it easy to deliver customized feeds in an extremely flexible
fashion. Once in place, any posts belonging to the specified categories will no
longer be displayed.

Custom feed including only specific categories, authors, etc.

Including specific content in your feeds is as simple as removing the minus sign “-”
from the various formats presented above. All of the same parameters and their
corresponding values may be used. Here are some examples to clarify
the technique:

211

Generate a feed containing content from only categories “x”, “y”, and “z”

http://digwp.com/feed?cat=x+y+z

Generate a feed including content strictly from category 11 that also
includes the term “apple”

http://digwp.com/feed?cat=11&s=apple

Generate a feed including content only from category 11, the year 2008,
and from author 3

http://digwp.com/feed?cat=11&year=2008&author=3

Generate a feed consisting of multiple tags

http://digwp.com/?feed=rss&tag=tag1,tag2,tag3

…and so on. Many combinations of these parameters are possible, enabling you to
configure the perfect feed for your readers.

Including categories via functions.php

For those of you not comfortable with the idea of messing around with your feed’s
URL, it is also possible to include categories and other parameters in your feeds by
placing the following script in your theme’s functions.php file:

// include categories in feed

function includedCatsFeed($query) {

 if ($query->is_feed) {

212

 $query->set('cat','x,y,z'); // included categories

 }

 return $query;

}

add_filter('pre_get_posts','includedCatsFeed');

Once in place, go ahead and edit the“x”, “y”, and “z” to match the IDs of the
categories you wish to include. You may also add or remove categories, or even
exclude other items by replacing the “cat” parameter in the third line with any of
the available query parameters discussed previously.

This function makes it easy to deliver customized feeds in an extremely flexible
fashion. Once in place, only posts belonging to the specified categories will
be displayed.

6.6.6 More Feed Customization Tricks
Just in case all of those customization tricks weren’t enough, here are a few more
that you may find helpful:

Alphabetize feed posts in ascending order by title

http://digwp.com/feed?orderby=title&order=asc

Feed for a specific page

http://digwp.com/page/feed

Alternate format for specific page

http://digwp.com/feed?pagename=page

213

Alternate format for specific page

http://digwp.com/feed?page_id=n

6.6.7 Styling Feeds
Although certain “purists” will tell you to never style your feeds, many people
choose to do so to improve upon the ultra-plain default style that most feed
readers provide. By adding a few custom CSS styles to your feeds, it is possible to
improve your site’s image, increase brand awareness, and facilitate usability.

The easiest way to add some CSS pizazz to your feed is to add inline styles via the
impressive Feedstyler plugin. The Feedstyler plugin is perfect for WordPress users
who are comfortable with CSS and wish to add custom styles to their WordPress
feeds. Feedstyler retains class and ID attributes in your markup while enabling you
to specify alternate feed styles. In addition to keeping your site and feed styles
separate, Feedstyler also accepts nested CSS declarations, accepts multiple class
names, and works on all feed readers that do not remove inline styles from the
XML markup. The plugin has certain limitations in terms of what it can and can not
do, but overall it’s a great way to style your feeds.
Check it out at http://digwp.com/u/173.

6.6.8 Removing the WordPress Version Number
By default, WordPress provides your WordPress version in your feeds. If you peek
under the hood and look at the source code for any of your WordPress feeds, near
the top of the file, you will see that WordPress includes its version number declared
via <generator> elements:

<generator>http://wordpress.org/?v=2.7</generator>

While this is useful information to legitimate sources, it serves as a slight security
risk by enabling attackers to target any specific security holes that may be present

http://digwp.com/u/173

214

in your particular version of WordPress. Thus, it is a good idea to remove this
information from your feeds and your theme’s header file as well. To remove this
information from your site’s feeds, include the following function in your theme’s
functions.php file:

function killVersion() { return ''; }

add_filter('the_generator','killVersion');

This will replace your WordPress version with literally nothing whenever its
generating function is called. To also remove the version information in the header,
we take a slightly different approach with this line in the functions.php file:

<?php remove_action('wp_head', 'wp_generator'); ?>

This simple yet effective code prevents the wp_generator function from appearing
in your theme’s header.php file.

Clean Up Your Head
In addition to using remove_action('wp_head','wp_generator') to remove the version info, you may also remove the annoying RSD
(Really Simple Discovery) link by using remove_action('wp_head','rsd_link'). Likewise, to remove the WLW (Windows Live Writer)
code, use remove_action('wp_head','wlwmanifest_link'). In fact, you can remove any of the content that is automatically displayed
in your WordPress <head> section by applying any of the following to your theme’s functions.php file:

<?php remove_action('wp_head', 'rsd_link'); // kill the RSD link ?>
<?php remove_action('wp_head', 'wlwmanifest_link'); // kill the WLW link ?>
<?php remove_action('wp_head', 'index_rel_link'); // kill the index link ?>
<?php remove_action('wp_head', 'parent_post_rel_link', 10, 0); // kill the prev link ?>
<?php remove_action('wp_head', 'start_post_rel_link', 10, 0); // kill the start link ?>
<?php remove_action('wp_head', 'feed_links', 2); // kill post and comment feeds ?>
<?php remove_action('wp_head', 'feed_links_extra', 3); // kill category, author, and other extra feeds ?>
<?php remove_action('wp_head', 'adjacent_posts_rel_link', 10, 0); // kill adjacent post links ?>
<?php remove_action('wp_head', 'wp_generator'); // kill the wordpress version number ?>

215

6.6.9 Disable and Redirect Unwanted Feed Formats
As previously discussed, WordPress generates your various feeds in a variety of
formats, including RDF, RSS 2.0, and Atom. This is great while you are configuring
your feeds for optimal distribution, however, if and when you settle on a specific
format (such as RSS 2.0), you may want to disable and redirect those alternate feed
formats for the sake of clarity, uniformity, and statistical analysis.

Using the following code in your theme’s functions.php file, any requests for the
specified feeds will be redirected to the URL of your choice. Place this into your
functions.php file:

// redirect feed
function redirectFeed() {
 wp_die();
 header("Location: http://digwp.com/feed/");
 exit();
}

Edit the URL in the third line with something useful, like your home page, a
“Subscribe” page, or even your active Posts Feed. Once this is done, specify which
alternate feed formats should be redirected by including any of the following lines
directly beneath the previous function:

add_action('do_feed', 'redirectFeed', 1); // all feeds
add_action('do_feed_rdf', 'redirectFeed', 1); // RDF (RSS 0.92) feed
add_action('do_feed_rss', 'redirectFeed', 1); // RSS 1.0 feed
add_action('do_feed_rss2', 'redirectFeed', 1); // RSS 2.0 feed
add_action('do_feed_atom', 'redirectFeed', 1); // Atom feed

216

6.6.10 Insert Custom Content into Feeds
One of the easiest things that you can do with WordPress is add custom content
to your posts. The custom content can be anything – text, markup, or even scripts
– and may be set to appear in blog posts, feed posts, or both. You can easily set
content to display before or after your post content, or in both places, if desired.

Good examples of how this sort of functionality is used include the addition of
copyright notices displayed in the feed footer, and advertisements appearing
before and/or after each feed item. The possibilities are endless.

To add some custom content to your own feed, place the following code snippet to
your active theme’s functions.php file:

function insertContent($content) {
 $content = $content . '<p>Place your custom content here!</p>';
 return $content;
}
add_filter('the_excerpt_rss', 'insertContent');

add_filter('the_content_rss', 'insertContent');

Simply edit the second line of the function to include the desired code, markup, or
text content. This function works by appending the specified custom content to the
post content. Then, to ensure that the added content is only included within your
feeds, we are using WordPress’ add_filter() function to execute the code only for
full and excerpted feed content. Further, by slightly tweaking the code, you can
insert custom content to appear before your regular feed content:

function insertContent($content) {
 $content = '<p>Place your custom content here!</p>' . $content;
 return $content;
}

Easy Ad Inserts

Using the code in this section,
inserting advertisements into
your feeds is a snap.

217

add_filter('the_excerpt_rss', 'insertContent');
add_filter('the_content_rss', 'insertContent');

And, as you can imagine, we can follow this line of thinking to include custom
content both before and after your feed post content:

function insertContent($content) {
 $content = '
 <p>This content appears before the feed post.</p>' . $content . '
 <p>This content appears after the feed post.</p>';
 return $content;
}
add_filter('the_excerpt_rss', 'insertContent');
add_filter('the_content_rss', 'insertContent');

Awesome Plugins for Custom Feed Content
Looking for a great way to spice up your blog feeds? Here are some of the best “feed-footer” plugins available for enhancing your
feeds with custom content, links, and much more!

• Better Feed WordPress Plugin http://digwp.com/u/174
A great plugin by the venerable Ozh that enables flexible customization of your feed footer. Add a copyright notice, custom
markup, “read-more” links, number of responses, related posts, and much more. We use this plugin at the Digging into
WordPress companion site http://digwp.com/ to help promote the book. Highly recommended.

• RSS Footer http://digwp.com/u/175
This very simple plugin from WordPress guru Joost de Valk enables you to add an extra line of content to articles in your feed,
defaulting to “Post from: ” and then a link back to your blog, with your blog’s name as its anchor text, which you can edit
from the plugin’s Admin Options page.

• Authenticate http://digwp.com/u/176
Authenticate is a highly flexible content-addition plugin that enables universal and/or targeted inclusion of custom content
for both feeds and posts. Ideal for adding copyright information, distribution policy, thank-you messages, custom links, special
offers, and much more. Custom content may be added to any location within posts or feeds – before, after, or even within post
content.

http://digwp.com/u/174
http://digwp.com/
http://digwp.com/u/175
http://digwp.com/u/176

218

6.6.11 Importing and Displaying External Feeds
This idea takes the blogroll one step further. Feed technology makes it easy to
import and display virtually any feed on the Web anywhere on your site. For
example, you may want to upgrade that tired old blogroll with a sidebar section
full of your friends’ recent posts. Here are some plugins designed to help you
import RSS feeds and display them on your site.

• Parteibuch Aggregator http://digwp.com/u/177
Displays aggregated feeds in WordPress pages and sidebars. Share the feeds
you read with the visitors of your blog. It is designed to be able to cope with
hundreds of feeds, thousands of aggregated feed items and a lot of traffic.

• InlineRSS WordPress Plugin http://digwp.com/u/178
Enables the importation and display of virtually any RSS feed. This plugin will
also display the titles of multimedia content and provide links to it.

• FeedWordPress http://digwp.com/u/179
A completely customizable feed-import plugin that works with your blogroll to
import and display your favorite feeds.

• Khanh’s Quick Feeds WordPress Plugin http://digwp.com/u/180
Easily display feed content to your posts, pages, sidebar and virtually anywhere
you can imagine. This plugin includes a polling feature to ensure feed freshness.

To display external feeds without using a plugin, we can use WordPress’ built-in
RSS import functionality to get the job done. Simply paste the following code
anywhere in your theme (e.g., the sidebar or footer) where you would like the feed
to appear (edit according to the code comments):

<h2><?php _e('Imported External Feed'); ?></h2>
<?php include_once(ABSPATH . WPINC . '/feed.php');
// edit this line with the URL of the imported feed
$rss = fetch_feed('http://feeds2.feedburner.com/DiggingIntoWordpress');
// edit this line to specify the number of feed items
$maxitems = $rss->get_item_quantity(7);

http://digwp.com/u/177
http://digwp.com/u/178
http://digwp.com/u/179
http://digwp.com/u/180

219

$rss_items = $rss->get_items(0, $maxitems);
?>

 <?php if ($maxitems == 0) echo "No items.";
 else
 foreach ($rss_items as $item) : ?>

 <a href="<?php echo $item->get_permalink(); ?>"
 title="<?php echo $item->get_date('j F Y | g:i a'); ?>">
 <?php echo $item->get_title(); ?>

 <?php endforeach; ?>

By including the feed.php file in the second line, we gain local access to the
fetch_feed() function, which enables us to easily import and display any feed we
wish. We need only to edit the feed URL in the fourth line, and then specify the
number of feed items to display in the sixth line (the “7” in our example), and we
are all set.

6.6.12 Buffer Period After Posting
Thanks to a tip from WPengineer http://digwp.com/u/181, we now enjoy a nice way to
provide a little time buffer between the moment of posting and the moment the
content appears in our feeds. Before learning about this method, there was no way
to prevent mistakes from immediately appearing in feeds that were noticed after
hitting the “Publish” button. Once the mistake is in the feed, it is beamed out all
over the place, leaving readers confused and you looking like a heel.

Fortunately, we can avoid this embarrassing problem by placing the following code
into our theme’s functions.php file:

http://digwp.com/u/181

220

function publish_later_on_feed($where) {
 global $wpdb;
 if (is_feed()) {
 // timestamp in WP-format
 $now = gmdate('Y-m-d H:i:s');
 // value for wait; + device
 $wait = '5'; // integer
 $device = 'MINUTE'; // MINUTE, HOUR, DAY, WEEK, MONTH, YEAR
 $where .= " AND TIMESTAMPDIFF($device, $wpdb->posts.post_date_gmt,
'$now') > $wait ";
 }
 return $where;
}
add_filter('posts_where', 'publish_later_on_feed');

As is, this code will provide a 5-minute buffer period for you to catch any errors
and make any last-minute changes. Five minutes later, your feed will be generated
as normal.

This function takes advantage of the $where variable by comparing the query value
to the SQL function timestampdiff(). After the specified time interval has elapsed,
the post will be published to your feed. Note that this function does not affect
normal post publishing on your site. Edit the $wait variable in the function to
specify a different period of time.

6.6.13 Protecting Feed Content
The flexibility and mobility of feeds also makes them prone to abuse. When normal
visitors and subscribers get ahold of your feed, they usually add it to their feed
reader of choice and enjoy the convenience of automatically updated, localized,
and consolidated content.

221

Conversely, when unscrupulous criminals get ahold of your feeds, they are free
to steal and abuse them. As mentioned earlier, so-called “scraper” sites steal
feeds and display them on automated blogs in order to make money from
advertisements. Yes, it sucks, but there are several things you can do to prevent this
type of frustrating behavior. Let’s take a look…

Feed Footer Plugins

A great way to deter scrapers while customizing the functionality of your feeds
is to use one of the various “feed-footer” plugins. In general, these plugins work
automatically in the background to add specific information to your feed posts.
Many types of custom information may be added, including copyright statements,
digital fingerprints, post links, author information, and much more. Here are a few
examples to consider:

• Better Feed WordPress Plugin http://digwp.com/u/174
Ozh’s Better Feed plugin enables you to customize your feeds with copyright info,
“Read-More” links, comment counts, related posts, Technorati links, and tons more.

• Owen Winkler’s AntiLeech WordPress Plugin http://digwp.com/u/182
Deters and protects against content thieves by including a small “AntiLeech”
graphic in your feed’s output. The graphic transmits user-agent data back to your
site for easy blocking. Very comprehensive feed protection with tons of features.

• Digital Fingerprint Plugin http://digwp.com/u/183
Places a digital fingerprint, customized and tailored by each individual user of this
plugin, into blog posts. Once embedded in your post, the plugin allows you to
quickly and easily search the blogosphere for references to the digital fingerprint.

• Angsuman’s Feed Copyrighter Plugin http://digwp.com/u/184
Adds a simple, unobtrusive copyright message to your feed items, thereby acting as
a deterrent to unscrupulous content thieves. Quick, easy, and effective.

Enable Partial Feeds

Perhaps the best way to prevent content theft is to enable the partial feed format.
As discussed earlier in this chapter, enabling partial feeds discourages scrapers and

http://digwp.com/u/174
http://digwp.com/u/182
http://digwp.com/u/183
http://digwp.com/u/184

222

other thieves by rendering your feeds useless to automated processing. Populating
their scraper pages with partial posts is not as lucrative as it is with full posts. Sure,
some of your legitimate users may complain a little, but this is a great way to
defend against stolen content.

Link Back to Your Site

Another effective method of preventing stolen content is to include links back to
your site within your posts. Many bloggers do this automatically as they write their
content because it helps readers discover related content, and also facilitates the
distribution of valuable link equity into other areas of your site.

Best of all, when scraper sites display your intact feeds on their sites, all of those
links that you have added to your content will be pointing right back at your site.
This acts as a strong signal to both visitors and search engines concerning the
original source of the material.

6.7.1 Validating Feeds
In this chapter, we have learned lots of essential information concerning WordPress
feeds. Now that we know what they are, where they are, and how to customize
our feeds, let’s wrap things up by looking at an important practice when delivering
syndicated content to your readers: validating your feeds.

With so many different feed readers available to choose from, it is vital to ensure
that your feeds are being generated and delivered as intended. The last thing you
want is to spend your time and effort writing content that is not being displayed
properly because of errors. Fortunately, there are plenty of free online Feed
Validators that will help you check your feeds for accuracy. Let’s have a look.

Free online feed validators

In the process of configuring your WordPress feeds, it is a good idea to check
your feeds for proper validation with any of the available online feed validation

Take Advantage

It never ceases to amaze us to
see how many thieves scrape
the content of popular sites like
Smashing Magazine, Noupe,
NetTuts, and the like. If one
of your posts is fortunate
enough to get a link in a post
from one of these sites, don’t
be surprised to see gazillions
of pingbacks back to your site.
Sure, the linkbacks are coming
from scraper sites, but it’s still
a good reason to include plenty
of internal links in your posts.

223

services. Here a few to choose from:

• http://feedvalidator.org/

• http://validator.w3.org/feed/

• http://www.atomenabled.org/feedvalidator/

And of course, there are many other good
validators as well. To validate your feed,
visit one of these sites and enter the URL of the feed you would like to check. If all
goes well, you should see something like the image to the right.

6.7.2 Diagnosing and Troubleshooting Errors
Of course, things don’t always go according to plan. While WordPress has gotten
better at generating valid feeds, there are many potential points of failure,
including in-post markup, scripts, and even certain types of text content that may
cause your feeds to validate as less than perfect. A much more common scenario
these days is to validate a feed that elicits only “recommendations” from the
validator.

If this happens, you may want to look into the various recommendations and see
if anything is easily fixed. Throughout the course of WordPress’ development, the
validity of its feeds has waxed and waned according to changes in both WordPress
and the algorithms of the feed validators.

For each error or recommendation listed in the validation results, the validator will
list a key phrase (usually highlighted in yellow) along with a “help” link. When
attempting to diagnose, troubleshoot, and repair these warnings, use the key
phrase to search the Web for more information. Include the exact phrase in quotes,
and also include any other associated terms, such as “WordPress,” “posts feed,”
“line number ##,” and anything else that may help refine the search results.

http://feedvalidator.org/
http://validator.w3.org/feed/
http://www.atomenabled.org/feedvalidator/

224

Of course, those “help” links are also generally useful and should be investigated
as well. Often times, the issue is something very common and easy to resolve.

If all else fails, and you are unable to pinpoint and correct the cause of the error
or warning, you can always install a clean version of WordPress, test the feed, and
then re-build your site from the ground up. During this process, as you sequentially
install your plugins and make other modifications, remember to test the feed after
each change to your site. This process can be tedious, but is generally a reliable way
of determining the cause of the issue.

Moving on…

In this chapter, we have learned a great deal about setting up, using, and
customizing WordPress feeds. In the next chapter, we explore the exciting world of
WordPress comments and dig into different ways of customizing, enhancing and
improving the functionality of your WordPress comment system.

225

Nick La’s Web Designer Wall
features an artistic design
that has inspired many sites
around the Web. Built with
WordPress, WDW shares
design-related articles covering
everything from Photoshop and
Flash tutorials to SEO tips
and web-design trends.

www.webdesignerwall.com

http://www.webdesignerwall.com

226

Think like a wise man but communicate

in the language of the people.

– W I L L I A M B U T L E R Y E A T S

7.1.1 Optimizing the WordPress
Comments Area
One of the most exciting things about WordPress is its highly flexible commenting
system. There is so much that you can do to improve and optimize your site’s
comments area that the subject is worthy of an entire chapter of its own. Out
of the box, WordPress provides a robust commenting and response system that
enables any site to effectively integrate and expediently handle even large
volumes of comments, pingbacks, and trackbacks. As good as the default comment
system is, however, there is a great deal more that may be done to sharpen the
appearance, functionality, and security of your WordPress-powered comment area.

7.1.2 Welcome to the WordPress Comments Area
The heart of the blogosphere is driven by its interactivity. Publishing content
with dynamic technologies like WordPress make it easy for millions of people
to express themselves, share news, and produce many other types of content.
But the interactivity enabled by WordPress’ powerful commenting and response
system connects users, authors, and machines to similar stories, related posts,
and associated information around the web. The WordPress comments area is
powerful, and with the help of some custom techniques, a few plugins, and a bit of
knowledge, is easily transformed into a highly interactive content response system.
This is fun, exciting stuff that will do wonders for the usability, likability, and
popularity of your site.

7 Working with Comments

227

228

7.1.3 About the WordPress Comment System
Whenever you post an article on your site, WordPress makes it possible and even
easy for readers to respond to your content in various ways. Essentially, there are
three different ways for your readers to respond to your post. They may either
leave a comment directly, set a trackback from an article on their site, or else simply
write about your post on their blog. As the response process unfolds on your site,
there are many different aspects involved. Here are the different parts of a typical
response area:

7.1.4 Comments, Pingbacks, and Trackbacks
In WordPress, three different comment types are possible. The most familiar type
of comment goes like this: a visitor arrives at your site, reads your post, and has
something to say about it. They find a form, usually located after the article. They
type in their name, email address, website URL, and then submit their comment.
That’s just called a “comment,” and it will show up along with any other comments
in your site’s comment area.

The second type of comment is called a “pingback,” and is actually more of a
response than a comment. Let’s say that you write a post about bacon and the
Food Network decides to tell their readers about your sizzling article. They publish
a post on their site that includes a link to your article so their readers can go there
and read about bacon. In this scenario, WordPress would detect that incoming link
from the Food Network and reciprocate by automatically posting a link back to the
Food Network site. This return link usually displays the title of the linking post as
its anchor text.

The third type of response that WordPress enables is called a “trackback,” which is
also much more of a response than an actual comment. To illustrate, let’s say that
the Food Network mentions your bacon article but does not actually include a link
to your site. If they create a trackback to your post (via the Post Edit screen in the
WordPress Admin), your post will link back to the Food Network article. Aside from
the differing underlying technology, pingbacks and trackbacks function nearly
identically. The main difference is that an actual link is not required for trackbacks.

Overly Confusing

The end result of a pingback
or trackback is the same thing,
a comment on your site linking
to another site that referenced
you. The difference is in the
technology of how it works.

Pingbacks

Pingbacks require an actual
link to your post that comes
from some other site. They
link to you, and if your theme
is set up for it, your site
automatically links back
to them.

Trackbacks

Trackbacks are very similar
to pingbacks, but don’t require
that the other site actually link
to your post. All they need to
do is tell WordPress to send a
trackback to your post via the
Post Edit screen. If trackbacks
are enabled on your site, your
post will then link back to the
other site.

229

There is a great deal of fancy technology behind the functionality of pingbacks
and trackbacks, the scope of which is beyond this book. What is most important to
know for now is the different types of responses and how they are made:

• Comments - left directly on your site by your visitors

• Pingbacks - a link from one blog post that is returned by another

• Trackbacks - a response (not necessarily a link) from one blog post that is linked
back from another

7.1.5 Anatomy of the WordPress
Comment Area
There are four fields and a button that make up your
garden-variety WordPress comment form: Name, Email,
Website, Comment, and Submit. Seems easy enough, but
the HTML markup for such forms is some of the most
verbose and strange HTML imaginable. Throw in a host
of special WordPress functions to enhance the comment
form’s functionality, and you have yourself a fairly complex
little chunk of code.

The WordPress gods were aware of this complexity, and
have taken steps to make things as easy as possible. For
example, all of the code required for the WordPress
comment system is contained within a single theme
template file named “comments.php.” Thus, to enable
comments, we need simply to include this file using the
following template tag:

<?php comments_template(); ?>

That tag will most commonly be found in the “single.php” file, but could also

Comment or Response?

Technically, pingbacks and
trackbacks are not comments.
Yet many sites still lump
together all types of responses
as “comments,” as in, “This
post has 15 comments.” More
accurately, we would say,
“This post has 15 responses.”

230

be included in other types of template files. For example, at the CSS-Tricks site,
each video screencast is displayed with a custom Page template. The regular
Page template is used for things like the Contact page and thus doesn’t include
comments, but the video screencast template does, because each screencast is open
and welcome to viewer feedback.

Now that we know where comments are used and how they are included, let’s go
through the anatomy of a typical WordPress Comment Area:

A typical comments area should display older comments first. Comments left
on a post are essentially a discussion, and discussion only makes sense if
displayed in chronological order.

Flipping the order and displaying newer comments first has potential uses,
however, just make sure the purpose of the comment area isn’t discussion.

For example, you can fairly easily create a community news section with
a comment area. Just turn the label 'name' into 'title', and 'comment' into
'description' and flip the order to display most recent comments first. Presto-
chango – a user contributed links area, with it’s own RSS feed, since every
Page or Post has its own unique comment feed (see Chapter 6.2.4).

• The comment display area, or comment thread, may be configured to display
comments in chronological order (oldest comment displayed first) or in reverse
chronological order (newest comment displayed first) via a setting in the Admin
Area (Settings > Discussion).

• Nested comments were integrated into
WordPress version 2.7 and enable your
readers to respond directly to specific
comments. Such comments are then
“nested” within the area beneath the
original comment. This is the best way to
enable true back-and-forth discussions
in comment threads. Fortunately, as
discussed later in the chapter, WordPress
makes it fairly easy.

231

Smashing Magazine uses tabs to toggle between
comments and trackbacks/pingbacks.

If you use the standard wp_list_comments function
to display comments, eliminating comment metadata

may come down to using display: none; in your
CSS file. Otherwise, a custom loop is in order.

Gravatars are connected to the author of the
comment by their otherwise-hidden email address.
In this screenshot, the bottom user does not have a

Gravatar, either because they did not enter an email
(wasn’t required), or because that email didn’t have
an associated Gravatar. To avoid a missing icon, a

default graphic is shown instead
Screenshot: sixrevisions.com.

• The comments display area displays three types
of responses: comments, trackbacks, and pingbacks.
These may appear together or else segregated into
distinct areas.

• Gravatars! These are small icons that are associated
with each comment author. By default, WordPress
can be configured to display Gravatars, and can even
assign a random Gravatar for commentators that do
not have them.

• Comment metadata includes things such as the
date and time the comment was left, the name and
URL of the commentator, and even the sitewide and/
or local comment number.

http://sixrevisions.com

232

• The comment form is the where the action happens. To leave a comment on
your post, readers must fill out admin-specified fields (such as the name and
email-address fields) of your comment form.

• The “Name” field of your comment form is where a commentator may specify
their name. This field is usually “required,” meaning that the comment will not
be processed unless this field contains a value.

• The “Email” field of your comment form is where a commentator may specify
their email address. This field is usually “required,” meaning that the comment
will not be processed unless this field contains a value.

• The “URL” field of your comment form is where a commentator may specify
their website address. This field is usually “optional” because not everyone has
the luxury of having their own website.

• The “Comment” field of your comment form is where the commentator writes
the comment. This text field is obviously required because there would be
nothing to post without it.

• The “Submit” button is what the commentator must click in order for the
comment to be processed by the server and ultimately displayed (or not,
depending on your comments policy) in the comment thread.

The comment form on CSS-Tricks
offers some reminders about what
people can and can’t do in the
comment area.

233

Now that we have reviewed the basics, let’s dive into some great ways to improve
the functionality, usefulness and user-friendliness of your response area.

7.2.1 Syndicating WordPress Comments
So you posted something that really has your readers
buzzing – you are getting tons of comments and even
a good number of trackbacks and pingbacks. As the
conversation evolves, make it easy for your readers and
commentators to stay current with the response thread
by syndicating the discussion in feed format. By default,
WordPress does this automatically by way of variously
formatted comment feeds. Many themes provide links to
these built-in feeds for every post on the site.

If your theme is not equipped with such links, you may add
them quite easily by using one (or more) of the URL formats
as described in the next couple of sections.

7.2.2 WordPress Main Comments Feed
By default, WordPress creates an RSS feed of all the comments on your site
automatically. This feed is available at any of the following three URLs:

http://domain.tld/comments/feed/ - Permalink format

http://domain.tld/wp-commentsrss2.php - Default format

http://domain.tld/?feed=commentsrss2 - Query-string format

Why have a feed for all of your comments? That’s a bit like asking why the sky is
blue. It’s not obvious, but it’s mostly because WordPress is just trying to be cool and
syndicate the information for anyone who wants to consume it. Perhaps you, as the

Feed Formats

For a more in-depth look at
the different types of feeds
and feed formats provided by
WordPress, check out
Chapter 6.3.1.

234

site admin, prefer to read new comments on your site via your RSS reader rather
than have them come to you via email. Perhaps your super-fans want to make sure
they keep up on every last comment posted on your site. The feed is simply there
to serve any need that may arise. Most likely, however, your readers would rather
tune in to conversations on specific posts. That’s where post-specific comment feeds
come into play.

7.2.3 Post-Specific Comment Feeds
Sucking on a firehose of every comment a site generates is usually
counterproductive. Fortunately WordPress also produces RSS feeds specifically for
each Post. The URL structure is simple and easy to remember. Just append “/feed/”
onto the end of any Post’s permalink. Here is an example:

• The Post - http://domain.tld/alligator-tacos/

• Post Comment Feed - http://domain.tld/alligator-tacos/feed/

Deliciously simple. Such comment feeds make it easy for savvy visitors to subscribe
to the post to stay current with the conversation. In fact, many themes include
prominent links to their Post Comment Feed for easy access. The nice thing about
individual post feeds is that they are available to anyone at anytime, even if the
subscriber has not commented on the post.

Likewise, when using default (non-permalink) URLs, the post-specific comment
feeds are available for each post via the following format:

http://domain.tld/?feed=rss2&p=123

…where “p=” references the post ID.

A good place to display a feed button or link for your Post
Comment Feeds is immediately before or after the comment
form of each post. By making the comment feed readily
available next to the comment form, commentators will be
reminded to grab the feed for future updates.

235

In addition to providing users a comments feed, you may also want to enable
them to subscribe to comments via email. Often, receiving email notification
of new comments is way easier than the process of subscribing (and eventually
unsubscribing) to a new feed. Currently, WordPress does not provide this
functionality by default, but until it does you can use Mark Jaquith’s Subscribe to
Comments plugin, which is readily available at http://digwp.com/u/34.

The Subscribe to Comments plugin is easily configurable via the
WordPress Admin, and provides a complete set of configurational
options. After the plugin is installed, a common place to display
the subscription option is directly beneath each post’s comment
form (see screenshot on this page).

7.3.1 Formatting the Comments Area
To code or not to code? Remember we said earlier how the Comments area can
be a bit complex and the WordPress gods have taken some steps to make it easier
for us? One of the big things we were talking about was a very specific WordPress
function. That function is this:

<?php wp_list_comments(); ?>

As a visitor leaving a comment, you have a checkbox
giving you the ability to subscribe to subsequent

comments on a post via email.

As an author, you are notified that you are already
the author of the post (hence automatically receive

new comment notifications) and are also given a
link to manage subscriptions for the site.

http://digwp.com/u/34

236

It looks so simple and innocent right there
on the page, doesn’t it? The fact is, wp_list_
comments is a powerhouse of functionality, able
to drastically simplify comment display in your
theme. This simplicity, however, comes at the
cost of flexibility. The wp_list_comments function
literally creates and spits out all of the required
HTML for all of the comments on any Post.

Because this function generates all of the HTML
automatically, you need to work with what it
gives you. This can be a problem. For a theme
designer, having HTML that you can’t get your
hands on can be frustrating. Don’t like the
particular class names that are used? Too bad.
Don’t want Gravatars? Too bad, you’ll have to
hide them with CSS. So at this point you’ll have
to decide which route you want to take:

wp_list_comments

• Easy to use out of the box

• Built-in threaded comments

• Built-in comment pagination

• Default CSS classes for many
comment properties

237

Custom loop

• Full control, not as easy to implement

• Standardized and/or custom CSS classes for just about anything

• Plugin support for extra functionality like threading and pagination

Which method you decide to use depends on many factors. In general, we advise
you to use the wp_list_comments function to display your comments. In those cases
where more control over structure, presentation, and functionality is desired,
using a custom loop is certainly going to be easier than wrestling with wp_list_
comments. In addition to these two methods, there is also the “old-school” method
of displaying comments: the “foreach” loop, which opens the door to more
possibilities.

In the next section of our “Optimizing Comments” chapter, we’ll explore all three
of these comment-display methods and then dig into some juicy techniques for
formatting and enhancing your WordPress Comments Area.

7.3.2 Using wp_list_comments() or a Custom Loop?
Before WordPress version 2.7, the comments loop that was used to query
the database and display your comments was a bit convoluted, but also well-
established and well-understood. It basically consisted of the following code:

<?php foreach ($comments as $comment) : ?>

 <?php comment_author_link(); ?>

 <?php comment_text() ?>

<?php endforeach; ?>

Then, in WordPress version 2.7, comments were enhanced with optional threading
and paging features. These new features are activated via the WordPress Admin

238

and require the wp_list_comments() template tag to operate. Thus, in 2.7 and
better, we replace the foreach method with, yep, you guessed it, wp_list_comments:

<?php wp_list_comments(); ?>

Yep, that’s all you need now to take advantage of WordPress’ default, out-of-the-
box, comment functionality, which now includes optional comment paging and
threading. The old foreach loop method still works, but you will need a plugin for
threaded and/or paged comments.

If you’re thinking that you need to use the old comments loop to fully customize
your comments display, think again. You could use the old loop setup, but you
would miss out on all of the cool new features. Instead, WordPress makes it
possible to create your own customized comments function and call it via the new
wp_list_comments() template tag. Let’s explore these different comment-display
methods and check out the possibilities.

The new comments loop

The wp_list_comments function doesn’t actually look like a loop, but it does
the same thing as the old foreach loop by cycling through your comments and
generating the required markup. Looking at the HTML output of wp_list_comments,
we get something like this:

<ol class="commentlist">
 <li class="comment even thread-even depth-1" id="comment-1">
 <div id="div-comment-1" class="comment-body">
 <div class="comment-author vcard">
 <img alt='' src='http://www.gravatar.com/avatar/' class='avatar
 avatar-32 photo avatar-default' height='32' width='32' />
 <cite class="fn">

239

 Mr WordPress</cite> says:
 </div>
 <div class="comment-meta commentmetadata">
 <a href="http://localhost/283/2009/08/hello-world/comment-page-
1/#comment-1">August 13, 2009 at 3:08 pm
 </div>
 <p>Hi, this is a comment.
To delete a comment, just log in and view
the post's comments. There you will have the option to edit or delete
them.</p>
 <div class="reply"></div>
 </div>

As you can see, the default output for the new comments loop (via the wp_list_
comments tag), is an ordered list that contains a gravatar image, several divs, lots of
variable classes, author links, and the comment itself. If this fits your theme’s design
and functionality, then you are good to go. Nothing could be easier, and the host
of included classes and markup elements should be sufficient to get things looking
exactly how you want them.

With the wp_list_comments method of displaying your comments, you have control
over the following parameters:

• avatar_size - an integer specifying the size, in pixels, of your gravatars. The
default is 32.

• style - a string specifying the type of markup used for your comments. May be
either “div”, “ol”, or “ul”. The default is “ul”, an unordered list. Note that you
will still need to wrap your comments list with your markup element of choice.
So, for example, if you are using an ordered list instead of an unordered list,
you would need to include the enclosing ”” tags like so:

240

<ol class="commentlist">
 <?php wp_list_comments(array('style' => 'ol')); ?>

• type - a string that specifies the type of comments to display. Either “all”,
“comment”, “trackback”, “pingback”, or “pings”. “pings” is both “trackback” and
“pingback” together. The default is “all”.

• reply_text - text string specifying the text to display for the comment reply
link. Default is “Reply”.

• login_text - text to display when registration is required to comment. Default
is “Log in to Reply”.

• callback - a string specifying the name of a custom function for your comments
display. Specifying your own function enables you to fashion your own
comment-display loop. Defaults to null.

• Additional parameters may be available, see the codex: http://digwp.com/u/35.

That’s quite a bit of control, but more customization may be necessary. If you need
more control over how your comments are displayed, you will need to tap into
the comment loop itself, which may be included directly in the comments.php file
or tucked away neatly into your functions.php file. In the next section, we’ll look
at how to include a custom comments loop via the functions.php file, then we’ll
remind you how to do it old-school with the classic foreach comments loop.

Utilizing a custom comments loop via functions.php

First, open your comments.php file and add the following code:

<ul class="commentlist">

 <?php wp_list_comments('type=comment&callback=mytheme_comment'); ?>

http://digwp.com/u/35

241

Then, open your functions.php file and add the custom comments function:

<?php function mytheme_comment($comment, $args, $depth) {
 $GLOBALS['comment'] = $comment; ?>
 <li <?php comment_class(); ?> id="li-comment-<?php comment_ID(); ?>">
 <div id="comment-<?php comment_ID(); ?>">
 <div class="comment-author vcard">
 <?php echo get_avatar($comment,$size='48',$default='<path_to_url>');?>
 <?php printf(__('<cite class="fn">%s</cite>
 says:'), get_comment_author_link()); ?>
 </div>
 <?php if ($comment->comment_approved == '0') : ?>
 <?php _e('Your comment is awaiting moderation.'); ?>
 <?php endif; ?>

 <div class="comment-meta commentmetadata"><a href="<?php echo
htmlspecialchars(get_comment_link($comment->comment_ID)) ?>"><?php
printf(__('%1$s at %2$s'), get_comment_date(), get_comment_time()) ?></
a><?php edit_comment_link(__('(Edit)'),' ','') ?></div>

 <?php comment_text(); ?>

 <div class="reply">
 <?php comment_reply_link(array_merge($args, array('depth' => $depth,
'max_depth' => $args['max_depth']))); ?>
 </div>
 </div>
<?php

}

242

Notice that we are not closing the element.
WordPress automatically generates the closing
depending on the markup generated for any nested
comments.
Once in place, the code placed into your comments.php
file will call your custom comments-loop from your
functions.php file and output the contents to the page.
This code may look like a lot, but it is easily chopped up
and customized to suit your needs.

The point here is that it is possible to get behind the
scenes and legitimately customize your comments loop
using the new wp_list_comments() template tag.

Going “old-school” with the original comments loop

This makes it even easier to customize your comments display, but threaded
comments and pagination are not possible without a plugin. Simply replace the wp_
list_comments tag with the following foreach comments loop and customize with
whatever markup and template tags you wish:

<?php foreach ($comments as $comment) : ?>
 <?php comment_author_link(); ?>
 <?php comment_text() ?>
<?php endforeach; ?>

And that’s all there is to it.

Now that we know how to customize our comment loop, let’s dig in, have some
fun, and explore some super-awesome tips and tricks for our WordPress
comment areas.

Backwards-Compatible
Comment Display
If you want your theme to be backwards-compatible,
just check for the presence of the wp_list_comments()
function in your comments.php file:

<?php if (function_exists('wp_list_comments')) : ?>
 <?php wp_list_comments(); ?>
<?php else : ?>
 <?php foreach ($comments as $comment) : ?>
 <?php comment_author_link(); ?>
 <?php comment_text() ?>
 <?php endforeach; ?>
<?php endif; ?>

243

7.3.3 Implementing Paged Comments
You just never know when you have some content on your site that will explode
and attract hundreds of comments. What am I talking about? You guys are stars,
I’m sure that’s going to happen to you all the time! A Post with hundreds of
comments can have pretty crazy vertical scroll going on. In general, we aren’t
afraid of vertical scroll on the web (unlike that nasty horizontal scroll), but there
are limits to anything. A recent post on CSS-Tricks with 62 comments netted 17,827
pixels in height!

An excellent way to handle posts that receive millions of responses is to break the
comment thread into sections and display it across multiple pages. This “Paged
Comments” feature was introduced in WordPress 2.7 and is extremely easy to
implement. Go to Settings > Discussion in the Admin area to enable it:

And then in your comments.php file, insert these two template tags wherever you
would like the “Next” and “Previous” pagination buttons to appear:

<?php previous_comments_link(); ?>

<?php next_comments_link(); ?>

That set of tags will output the next/previous links for your comments area,
automatically appearing only when there is more than one page of comments. If
there is only one page of comments, no links are displayed.

244

HEADS UP: There are some potential duplicate-content issues (an SEO problem)
with paged comments. This is because there are multiple unique URLs generated
for each page of comments. Each of these URLs contains the exact same content as
the original post. For example:

http://yoursite.com/ghost-dad-rocked/
http://yoursite.com/ghost-dad-rocked/comments-page-1/
http://yoursite.com/ghost-dad-rocked/comments-page-2/
http://yoursite.com/ghost-dad-rocked/comments-page-3/

Content-wise, the only difference between these three pages is the comments. To
make matters worse, each of the comments has a datestamp that is a permalink
to that particular comment, which uses the paginated URL in the link. So when a
search bot wanders through, they’ll see lots and lots of links to the “/comments-
page-1/” version of your post – most likely many more links are pointing to the
comment pages than the actual post URL.

To prevent this duplicate content issue from happening, there are several
possible solutions:

• Don’t use paged comments and party like it’s 2007
• Use meta tags to specify the canonical URL for each post

• Install the SEO for Paged Comments plugin – http://digwp.com/u/36

If your site is super-popular, or is getting to be that way, it is probably a good idea
to set some upper-limit for the number of comments that appear on a page and
use a plugin to set the canonical URL for the post.

If the number of comments for each post on your site is minimal, the easiest thing
to do is simply forego the paged comments and go “traditional” with each post
including all of its comments on the same page.

To actually change the way WordPress generates the comment pages, the SEO
for Paged Comments plugin eliminates duplicate content by replacing your post

Canonical URLs

In 2009, the major search
engines adopted support for
canonical meta tags. These
tags enable you to specify a
single, definitive URL for your
web pages, and thereby avoid
any duplicate content issues.
Here is an example of usage:

<link rel="canonical"
href="http://domain.tld/
canonical/url/" />

For more information on the
use of canonical meta tags for
WordPress, see Chapter 8.2.5.

http://digwp.com/u/36

245

content with excerpts on all comment pages other than the post page itself. I use
this plugin on several of my sites and it works beautifully.

7.3.4 Implementing Threaded Comments
Threaded comments enable people to write a comment that is a direct response to
an already existing comment, creating a more conversational flow to a comment
thread. This approach is almost always ideal, assuming the design of your site can
support it. Implementing threaded comments begins by enabling the option in the
WordPress Admin:

Assuming your theme supports threaded comments, activating this option in the
Admin will endow each of your comments with a “Reply” link that enables visitors
to reply directly to any comment on your post.

Before the implementation of threaded comments in WordPress 2.7, any direct
replies to a comment required use of the infamous “@” symbol, as in “@comment-
author: blah blah blah.” Although this method of replying has become quite
common around the Web, it is no longer necessary on sites running WordPress
version 2.7 or better.

Now, instead of “@ing” someone to address a previous comment, you can
simply click on the “Reply” link next to the comment itself. Once submitted,
your comment will be displayed directly under the comment to which you were

246

responding. This functionality makes it possible for each comment to be the
start of a new, tangential discussion, and greatly increases the usability of your
comments area.

If your theme does not provide threaded-comments functionality, here is an easy
way to implement them within your comments.php file:

1. Backup your files, as usual (just in case you need to restore original files).

2. In the WordPress Admin, check the “Enable Threaded (nested) Comments” in
the Settings > Discussion page. Also specify how many “levels deep” you would
like to nest your comments.

3. Add the following code to your header.php file, directly above the wp_head()
template tag:

<?php if (is_singular() AND comments_open() AND (get_option('thread_
comments') == 1)) wp_enqueue_script('comment-reply'); ?>

4. Add the following parameter to just before the closing “</form>” tag of your
theme’s comment form:

<?php comment_id_fields(); ?>

5. Make sure that the <textarea> of your theme includes an attribute of
id="comment".

6. Make sure that your entire comment form is enclosed within a <div> with an
attribute of id="respond".

7. Add a “cancel-comment” link just above your comment form:

<div><?php cancel_comment_reply_link(); ?></div>

8. In your comments.php file, replace the old loop with the new hotness:

<?php if (have_comments()) : ?>
 <ol class="commentlist">
 <?php wp_list_comments(); ?>

Starter CSS

There are a lot of classes
in the HTML of threaded
comments that you need to
account for in CSS to make
the comments actually look
properly threaded. It's often
easiest to start with a base set
of styles and adjust as needed.

http://digwp.com/u/468

247

<?php else : // this is displayed if there are no comments so far ?>
 <?php if ('open' == $post->comment_status) : ?>
 <!-- if comments are open, but there are no comments -->
 <p class="nocomments">Somebody say something!</p>
 <?php else : // comments are closed ?>
 <!-- if comments are closed -->
 <p class="nocomments">Comments are closed.</p>
 <?php endif; ?>
<?php endif; ?>

That's all there is to it, really. Of course, like all things WordPress, there are
a gazillion different ways to customize things, change the design, enhance
functionality, and so on. Once you have threaded comments set up, they are easily
styled with the following CSS selectors:

.commentlist li.depth-1 {}

.commentlist li.depth-2 {}

.commentlist li.depth-3 {} /* and so on */

Reply-To for Non-JavaScript Users
To accommodate those without JavaScript, replace your crusty old “Leave a Comment” text with something
more dynamic by using this instead:

<?php comment_form_title('Leave a Reply', 'Leave a Reply to %s'); ?>

This tag will output “Leave a Reply” by default, but as soon as someone without JavaScript clicks to reply to
a comment, the page refreshes and the output changes to “Leave a Reply to Whoever.” You can customize
the text to whatever you want. The “%s” will dynamically output the name of the person being replied to.

Threaded Plugins

If your version of WordPress
does not support threaded
comments, upgrade. If
upgrading is not on the menu,
you can get threaded comments
by using one of these
fine plugins:

http://digwp.com/u/186
http://digwp.com/u/187
http://digwp.com/u/188
http://digwp.com/u/189

http://digwp.com/u/186
http://digwp.com/u/187
http://digwp.com/u/188
http://digwp.com/u/189

248

You can then target any element for a specific comment level like so:

.commentlist li.depth-1 div {}

This CSS would target any <div> elements within any first-level comment.

7. 3.5 Separating Comments, Pingbacks, and Trackbacks
When displaying the responses to your posts, an effective way to reduce the
clutter and keep things organized is to separate the comments from the pingbacks
and trackbacks. This not only keeps the conversation flowing smoothly, it also
emphasizes the ping/trackback responses by displaying them in a continuous list.

Even More Comments Styling
The new comment-display functionality generates a ton of context-specific classes, making it easy to style your comments however
you wish. Each comment is surrounded by an element (by default) that will include the following classes, depending on page
view:

• 'comment', 'trackback', 'pingback'

• 'byuser' for any registered user

• 'comment-author-authorname' for specific registered user

• 'bypostauthor' for comments by the post author

• 'odd' and 'even' for odd and even numbered comments

• 'alt' for every other comment

• 'thread-odd', 'thread-even', 'thread-alt' for the top-level comment in a thread

• 'depth-1', 'depth-2', 'depth-3', etc. applied according to the level of comment nesting

249

This is one of the oldest tricks in the WordPress book, and there are as many
different ways to approach it as there are different comments.php files. Here is a
method for separating comments and ping/trackbacks that is as widely applicable,
adaptable, and flexible as possible.

Thanks to the “type” parameter of the wp_list_comments() template tag,
separating your comments, pingbacks, and trackbacks is a breeze. Here are some
examples to give you a general idea. Once you see the pattern, you can set things
up however you like.

Separate comments from both pingbacks and trackbacks

<h3>Comments</h3>

<ol class="comments">

 <?php wp_list_comments('type=comment'); ?>

<h3>Pingbacks/Trackbacks</h3>

<ol class="pingbacks-trackbacks">

 <?php wp_list_comments('type=pings'); ?>

Separate comments, pingbacks, and trackbacks

<h3>Comments</h3>

<ol class="comments">

 <?php wp_list_comments('type=comment'); ?>

<h3>Pingbacks</h3>

250

<ol class="pingbacks">

 <?php wp_list_comments('type=pingback'); ?>

<h3>Trackbacks</h3>

<ol class="trackbacks">

 <?php wp_list_comments('type=trackback'); ?>

And finally, here is the code required to separate comments from pingbacks and
trackbacks using the old-school, foreach loop:

<h3>Comments</h3>

<?php foreach ($comments as $comment) : ?>

 <?php $comment_type = get_comment_type(); ?>

 <?php if($comment_type == 'comment') { ?>

Display Clean Pingbacks and Trackbacks
When listing your pings using the default loop, you will see a link followed by a snippet of text from the page that pinged your
post. These snippets can vary in size, and are difficult to control because you never know what to expect from them. Fortunately,
we can clean up the default display of pings by removing the text snippet and listing only a nice, clean link back to the pinging
site. To do this, we need to add the following callback function to your theme's functions.php file:

// clean pingbacks and trackbacks
function cleanPings($comment, $args, $depth) {
 $GLOBALS['comment'] = $comment;
 echo ''.comment_author_link().'';
}

Then, add the required callback parameter to the wp_list_comments function like so:

<?php wp_list_comments('type=pings&callback=cleanPings'); ?>

Feature / Bury

This simple plugin will allow
you to click links from the
front or back end to "feature"
or "bury" a comment. This
doesn't do anything by itself,
but adds those class names to
the comment so you can
style them appropriately.

http://digwp.com/u/467

251

 <div class="comment">

 <p><?php comment_author_link(); ?></p>

 <?php comment_text(); ?>

 </div>

 <?php } ?>

<?php endforeach; ?>

<h3>Pingbacks/Trackbacks</h3>

<?php foreach ($comments as $comment) : ?>

 <?php $comment_type = get_comment_type(); ?>

 <?php if($comment_type != 'comment') { ?>

 <?php comment_author_link(); ?>

 <?php } ?>

<?php endforeach; ?>

You will inevitably want to customize the markup, template tags,
and other functionality, but the central technique is all there.
We are segregating the previous single comment loop with two
individual loops that target comments and ping/trackbacks,
respectively. Within each of these two loops, we are testing for the
comment type and only displaying the preferred type within
each loop.

Along the way, we season the script with some modest HTML
markup to keep things readable on the page. Once you establish
core functionality on your site, you should customize the code
according to your needs.

Keep 'em Separated

As you can see, displaying comments and ping/
trackbacks separately helps keep your comments
clean and organized. Otherwise, pingbacks and
trackbacks get mixed up in your comment thread
and ruin the conversation.

252

7.3.6 Eliminating Pingbacks and Trackbacks
It may be impossible to stop people from linking to your site (and why would you
want to?), but you don’t have to show their pingbacks and trackbacks on your site.

At best, pingbacks are still used around the Web, but trackbacks are slowly going
extinct. Most trackbacks are spam anyway, so there is good reason to stop them
from showing on your site.

Indeed, there are many sites that wish not to display their incoming pingbacks and
trackbacks along with their comments, or anywhere else for that matter. If this
sounds like you, there are several ways to go about it.

Only Display Pingbacks/Trackbacks Markup if They Exist
In the previous code example showing how to display separate comments, pingbacks, and trackbacks, the headings for each
section will be displayed even if there are no responses. To prevent this from happening, we ensure that all ping/trackback-related
code is displayed only if some ping/trackbacks actually exist. Here’s the code to do this:

<?php if (!empty($comments_by_type['comment'])) : ?>
 <h3>Comments</h3>
 <ol class="comments">
 <?php wp_list_comments('type=comment'); ?>

<?php endif; ?>

<?php if (!empty($comments_by_type['pings'])) : ?>
 <h3>Trackbacks/Pingbacks</h3>
 <ol class="pingbacks-trackbacks">
 <?php wp_list_comments('type=pings'); ?>

<?php endif; ?>

253

Disable ping/trackbacks from the Admin area

In the Admin area, go to “Settings > Discussion” and uncheck the option for
“Allow link notifications from other Weblogs.” This will disable pingbacks and
trackbacks on your site for all posts going forward. This global setting may be
overridden on a post-by-post basis by checking “Allow Pings” on the Post Write/
Edit page.

Omit ping/trackbacks from the comments loop

Using the wp_list_comments tag to display your comments, simply set the “type”
parameter as described in section 7.3.2. With the following code, for example, no
pingbacks or trackbacks will be displayed – only comments:

<h3>Comments</h3>

<ol class="comments">

 <?php wp_list_comments('type=comment'); ?>

Delete the wp-trackback.php file from the root directory

This is a very effective way of permanently disabling pingbacks and trackbacks.
It is a totally safe thing to do, just remember to re-delete the file after
upgrading WordPress.

Globally disabling via plugin

To globally disable trackbacks only, we can use Viper007Bond’s Disable Trackbacks
plugin http://digwp.com/u/37. Since this is a very simple plugin, we can just add it to
our active theme’s functions.php file (code modified/formatted for clarity):

Save the Juice

Pingbacks may represent a
reciprocal linking affair, but
trackbacks are generally free
links to the referring site. Why
waste the juice on a site that
can't spare an actual link?

http://digwp.com/u/37

254

// Disable Trackbacks http://digwp.com/u/37
class DisableTrackbacks {
 // initialize plugin
 function DisableTrackbacks() {
 add_action('pings_open', array(&$this, 'pings_open'));
 }
 // if trackback, close pings
 function pings_open($open) {
 return ('1' == get_query_var('tb')) ? FALSE : $open;
 }
}
// load after all other plugins
add_action('plugins_loaded', create_function('', 'global
$DisableTrackbacks; $DisableTrackbacks = new DisableTrackbacks();'));

Once in place, the DisableTrackbacks function will effectively eliminate all
trackbacks from registering with your site. To ensure that no existing trackbacks
are displayed, you should also omit them from the comment loop as described in
the previous section.

Note that pingbacks will still be processed even with the Disable Trackbacks script
in place.

7.3.7 Control Comments, Pingbacks, and Trackbacks
Directly with the Database
WordPress provides several ways of controlling which posts are open to comments,
pingbacks, and trackbacks. In the Admin Settings Discussion area, you can disable
all responses on a sitewide basis for all future comments. You may also control
responses for each post via the “Discussion” panel in the post-management screen.

255

Beyond these methods, you can either use a plugin such as the Auto Moderate
Comments plugin http://digwp.com/u/38, or else save time and effort by simply
querying the database directly. Querying the database is a great way to control
responses on existing posts. Here is a collection of quick, copy-&-paste SQL recipes
for controlling comments, pingbacks, and trackbacks:

Globally enable pingbacks/trackbacks for all users

UPDATE wp_posts SET ping_status = 'open';

Globally disable pingbacks/trackbacks for all users

UPDATE wp_posts SET ping_status = 'closed';

Globally disable pingbacks/trackbacks before a certain date

For this query, specify the ping_status as either open or closed. Also, specify the
date by editing the date, “2009-09-09”, to suit your needs.

UPDATE wp_posts SET ping_status = 'closed' WHERE post_date < '2009-09-09'
AND post_status = 'publish';

Complete, one-step discussion management

Given the queries described above, we may fashion the following “one-step” SQL
queries, perfect for complete, plugin-free discussion management:

Globally enable/disable all discussion: comments, pingbacks and trackbacks

For this query, specify the comment_status as either open, closed, or registered_only.
Also, specify the ping_status as either open or closed.

UPDATE wp_posts SET comment_status = 'open', ping_status = 'open'
WHERE comment_status = 'closed' AND post_status = 'publish';

Back that DB Up!

Before running any SQL
queries or doing any other work
on your database, remember to
make a backup copy or two.
The database stores all of
your information and data – it
would suck royally to lose it.

Quick and Easy

These SQL queries are perfect
for managing discussion a few
times a year without using
another plugin.

http://digwp.com/u/38

256

Globally enable/disable comments, pingbacks and trackbacks before a certain date

For this query, specify the comment_status as either open, closed, or registered_only.
Also, specify the ping_status as either open or closed. Finally, specify the date by
editing the “2009-09-09” to suit your needs.

UPDATE wp_posts SET comment_status = 'closed', ping_status = 'closed'
WHERE post_date < '2009-09-09' AND post_status = 'publish';

7.4.1 Customizing Comment Display
Even if your theme is already configured to display comments in a useful and
visually appealing way, there is always something that may be improved. In this
section, we’ll show you some awesome ways to completely trick out the visual
presentation of your WordPress comments area.

7.4.2 Numbering Comments Globally and Locally
There are basically two different ways to number your comments: globally and
locally. Global numbering of comments happens automatically as comments are
added to the WordPress database. The number of each comment on your site
represents its position within the comments database table. Global comment
numbers are called via the comment_ID template tag. This tag may be used to
identify individual comments with their associated comment ID, like so:

<a href="#comment-<?php comment_ID(); ?>"
 id="comment-<?php comment_ID(); ?>">Permalink for this comment

Identifying each comment with its global ID via the markup makes it easy for
people to refer and link to any specific comment on your site. And, while you
may also label each comment as it appears on the page with its corresponding
global ID, you may want to use local numbering of comments instead. Why?

257

Because global numbering would appear as shown in the left screenshot, and local
numbering would appear as shown in the right screenshot:

Ahh, yes. Much better. A good rule of thumb is to keep our comments numbered
locally in the comment display area, and numbered globally in the source code.
Indeed, implementing locally numbered comments is straightforward. If your
theme does not include such functionality, open your comments.php file and follow
one of the following tutorials, depending on your comment-loop configuration:

For single comments loop (i.e., no separation of comments and ping/trackbacks)

1. In your comments.php file, add the following line above your comment loop:

 <?php $commentcount = 1; // number of first comment ?>

Global Comment Numbering
is nice in that every single comment has
a unique code and link, but doesn’t make
much sense in this visual context.

Local Comment Numbering
makes more sense in the context of a
conversation, and the links are still unique.

258

2. Then, within the comment loop, add the following line to the location where
you would like to display each comment’s number:

 <p class="comment-count"><a href="#comment-<?php comment_ID(); ?>">#<?php
echo $commentcount++; ?></p>

For double comments loop (i.e., separation of comments and ping/trackbacks)

1. In your comments.php file, add the following line above your comment loop:

 <?php $commentcount = 1; // number of first comment ?>
<?php $pingbackcount = 1; // number of first pingback ?>

2. Then, within the loop that displays comments, add the following line:

 <p class="comment-count"><a href="#comment-<?php comment_ID(); ?>">#<?php
echo $commentcount++; ?></p>

3. Finally, within the loop that displays ping/trackbacks, add the following line:

 <p class="pingback-count"><a href="#comment-<?php comment_ID(); ?>">#<?php
echo $pingbackcount++; ?></p>

And that’s all there is to it. Notice that we have also implemented global comment
numbers within this method. Thus, once in place, this code will display a link for
each comment that shows local comment numbers on the web page and global
comment numbers in the source code. Nice.

Once your comments are numbered locally, you can enjoy the best of both worlds
by including something like this along with the display of each comment:

<a href="<?php the_permalink(); ?>#comment-<?php comment_ID(); ?>"
id="comment-<?php comment_ID(); ?>" title="Permalink for comment #<?php
echo $comment_count; ?>">Comment #<?php echo $comment_count; ?>

259

Once in place, this code will output the following information on the web page:

…and the following markup in the source code:

Count Comments Only
To display the number of comments only, place the following
code into your functions.php file:

function countComments($count) {
 global $wp_query;
 return count($wp_query->comments_by_type['comment']);
}
add_filter('get_comments_number', 'countComments', 0);

What we’re doing here is filtering WordPress’ comments_number
function to output only the number of comments. Normally
the function counts all comments, pingbacks, and trackbacks,
but with this function in place, only comments will be counted.

To display the total number of comments after implementing
the countComments function, simply place the comments_number()
template tag wherever you would like to display the number.

260

7.4.3 Alternating Comment Styles
Another way to improve the usability and overall stylishness
of your comments-display area is to alternate the appearance
of every other comment, as seen in the left-hand screenshot of
Stephen Cronin’s site, scratch99.com.

Depending on your particular theme design, this method of
distinguishing between odd and even comments may greatly
facilitate comment readability on your site, thereby making it
easier for readers to follow the conversation and perhaps feel
motivated to participate.

The process of styling alternating comments differently
involves determining which comments are oddly numbered
and which are evenly numbered. In WordPress 2.7 and better,
comments automagically include “odd” and “even” classes for
odd- and even-numbered comments, respectively. This makes
it a snap to implement your own custom CSS styles for each of
these classes. Perhaps something like this:

.odd {

 background: white;

 color: black;

 }

.even {

 background: black;

 color: white;

 }

Well, maybe not that extreme, but you get the idea. :)

Take it Easy…

Just because you can pimp out some
serious alternating comment styles
doesn’t give you license to go crazy.
In this screenshot (at left) from
scratch99.com, Stephen Cronin
alternates comment styles in subtle
fashion, letting the content speak
for itself.

http://www.scratch99.com/

261

7.4.4 Custom Styles for Authors
and Members
Similar to the technique of styling alternate comments is the fine art
of styling unique author and member comments. As with alternating
comment styles, unique author and registered-member styles is a
great way to improve readability, usability, and all-around sleekness of
your WordPress comments area. And the good news is that WordPress
2.7 automagically includes CSS classes for both types of comments.
For the author of the blog post, WordPress includes a class named
“bypostauthor”. For registered users who are logged in to your site, a
class named “byuser” is included in that user’s comments. These classes
enable you to easily apply custom CSS styles to these types
of comments.

For older versions of WordPress, some additional code is required to
implement custom styles for authors. The following code will check the
comment author to see if it is the same as the post author. If it is, a CSS
class named “comment-author” will be source code output. Thus, place
the following code into the HTML element of your choice:

<?php if ($comment->user_id == $post->post_author) { echo '
class="comment-author"'; } ?>

Using a basic comments loop, here is how we could use this code:

<?php foreach ($comments as $comment) : ?>
 <div<?php if ($comment->user_id == $post->post_author) {
 echo ' class="comment-author"'; } ?>>
 <p><?php comment_author_link(); ?></p>
 <?php comment_text(); ?>
 </div>

<?php endforeach; ?>

262

Once in place, this code will enable you to apply CSS styles such as the following:

.comment-author {

 font-weight: bold;

 color: red;

 }

The cool thing about this snippet is that it will output the “comment-author”
class for any post author on your site. Unfortunately, because the CSS class is the
same for all post authors, it is not possible to style author comments differently
according to specific authors.

Fortunately, there is always more than one way to get things done with WordPress.
Here is an alternate “author-highlight” method that will enable you to target
specific post authors directly:

<?php if ($comment->comment_author_email == "chris@digwp.com")
 echo 'class="author-chris"'; ?>

With that snippet in place, any comment left specifically by Chris may be styled by
an echoed CSS class named “author-chris”. Likewise, to output unique class names
for multiple authors, we can use something like this:

<?php if ($comment->comment_author_email == "chris@digwp.com") echo
'class="author-chris"'; elseif ($comment->comment_author_email == "jeff@
digwp.com") echo 'class="author-jeff"'; ?>

By adding additional “elseif()” statements, we may target as many specific
authors as needed.

263

7.4.5 Styling Comments with Gravatars
As many of you know, gravatars are globally recognized avatars that appear next
to your comments and other content on supportive sites around the Web. So
instead of just leaving your name and website, you can show a thumbnail-size
image of yourself to help improve branding and site-promotion.

To get your own Gravatar, simply go to the free signup page at the Gravatar
website http://digwp.com/u/190 and provide the required information, which is
basically just a valid email address. After signing up, you get to upload your own
image and customize your profile. Within moments, your new gravatar will begin
to appear on gravatar-enabled websites.

To display gravatars on your WordPress site, log in to your Admin area and visit the
Settings > Discussion page. There, you will be able to specify your preferences for
the following:

• Whether or not you want to display gravatars

• Acceptable rating of your displayed gravatars

• The default gravatar that will be displayed

Once you have set these options, click save and open your theme’s comments.php
file. In the location where you want the gravatars to display, add the following line
to your comments loop:

<?php if(function_exists('get_avatar')) { echo get_avatar($comment, $size =
'50', $default = 'http://domain.tld/default.png'); } ?>

Then, specify the size of the gravatar, which may be anything up to 96 pixels
(square), and also the default image to use in case the user does not have a
gravatar. This code will output an image element () that points to the
commentator’s gravatar and includes the following attributes (based on our
previous example):

Twitter Avatars

You can also display Twitter
avatars with comments by
grabbing the free script at:

http://digwp.com/u/191

Add the script to your
functions.php file and display
the avatars in your theme like
so:

<?php twittar('50',
'http://digwp.com/path/
default.png', '#ffffff',
'twitavatars', 1, 'G'); ?>

http://digwp.com/u/190
http://digwp.com/u/191

264

<img alt="" src="http://domain.tld/default.png" class="avatar avatar-50
avatar-default" height="50" width="50" />

You may then customize the image with additional markup, CSS styles, or whatever
you wish. It’s that easy – if you are using WordPress 2.5 or better. If you are using
an older version of WordPress, you may use the same code as above, but you will
need to either install a gravatar plugin or else include the required code manually.
Here are a couple of the best gravatar plugins:

• Gravatars2 - http://digwp.com/u/192

• WP-Gravatar - http://digwp.com/u/193

To get gravatars working on older versions of WordPress, you may also skip the
plugin and code it yourself. Open your theme’s comments.php file and add the
following to the location where you would like the gravatars to appear within the
comments loop:

<?php // gravatars for WordPress < 2.5

 $gravatar_size = "50";

 $gravatar_default = "http://domain.tld/default.png";

 $gravatar_email = get_comment_author_email();

 $gravatar_url = "http://www.gravatar.com/avatar.php?gravatar_
id=".md5($gravatar_email)."&default=".urlencode($gravatar_
default)."&size=".$gravatar_size;

 echo '';

?>

Before using this code, remember to edit the “$gravatar_size” and “$gravatar_
default” variables with the display size and default image, respectively. Once
in place, this code will display a gravatar for each comment author who has a
gravatar, or else it will display the specified default image.

http://digwp.com/u/192
http://digwp.com/u/193

265

Finally, if you are developing a theme that needs to ensure backwards-
compatibility with older (pre-2.5) versions of WordPress, you may combine the
default, built-in method with the backwards-compatible fallback. To do this, we
employ a simple bit of PHP logic, like so:

<?php // backwards-compatible gravatars

if (function_exists('get_avatar')) {

 // gravatars for WordPress 2.5 +

 echo get_avatar($comment, $size = '50', $default = 'http://domain.tld/
default.png');

} else {

 // gravatars for WordPress < 2.5

 $gravatar_size = "50";

 $gravatar_default = "http://domain.tld/default.png";

 $gravatar_email = get_comment_author_email();

 $gravatar_url = "http://www.gravatar.com/avatar.php?gravatar_
id=".md5($gravatar_email)."&default=".urlencode($gravatar_
default)."&size=".$gravatar_size;

 echo '';

} ?>

As with the previous two methods, place this code within the comments loop and
you are good to go. You will want to edit the “$gravatar_size” and “$gravatar_
default” variables with the display size and default image, respectively.

Gravatars in Posts!

Gravatars aren’t only for
comments – they also look
great when used to display a
thumbnail image of the post
author. All you need to do is
include the following code
within the post loop of your
single.php template file:

<?php $author_email = get_
the_author_email(); echo
get_avatar($author_email,
'96'); ?>

266

7.4.6 Add a "Your comment is awaiting moderation" Message
When moderating comments on your WordPress site, it is very helpful to
commentators to let them know if their submitted comment is waiting in the
moderation queue. By default, WordPress will display moderated comments to
their authors but not to other visitors. Thus, it may be confusing for someone who
leaves a comment and sees it appear in the comment thread, only to watch as it
is completely ignored by everyone else. For this reason, including some sort of an
“awaiting moderation” message is extremely important for improving the usability
of your comments area.

The good news is that, if you are using the wp_list_comments method to display
your comments, you don’t need to do anything – a comment moderation message
is already built-in. If you are using a custom loop via functions.php, simply add the
following snippet of code to your function:

<?php if ($comment->comment_approved == '0') : ?>

 <p class="moderation">Your comment is awaiting moderation.</p>

<?php endif; ?>

And, if you are using the old-school foreach comments loop, adding a comment-
moderation message is just as simple:

1. Locate the comments loop, which should open and close with the
following code:

 <?php foreach ($comments as $comment) : ?>
 <!-- this is the comments loop! -->
 <?php endforeach; ?>

2. Within the comments loop, add the following code:

 <?php if ($comment->comment_approved == '0') : ?>
 <p class="moderation">Your comment is awaiting moderation.</p>
 <?php endif; ?>

Forget?

For more information on using
either a custom loop or the
wp_list_comments method of
displaying comments, check out
section 7.3.2 in this chapter.

267

3. Your loop should now contain the following (along with other template tags,
markup, etc.):

<?php foreach ($comments as $comment) : ?>

 <?php comment_text(); ?>

 <?php if ($comment->comment_approved == '0') : ?>

 <p class="moderation">Your comment is awaiting moderation.</p>

 <?php endif; ?>

<?php endforeach; ?>

That’s all there is to it! Season to taste and enjoy your site’s improved usability!

7.4.7 Moderation Links in the Theme Itself
As described in Chapter 5.3.4 (Extending WordPress), adding some easy admin
buttons is a great way to improve the comment-moderation process for your site.
In addition to managing comments through the WordPress Comments Admin area,
it is also helpful to have some easy admin buttons located next to the comments as
they appear on your blog. Here is an easy way to add “spam” and “delete” links
next to each comment whenever you are logged in as Administrator. Having access
to spam and delete buttons next to each comment makes it super-easy to clean up
missed spam, scummy trackbacks, and other garbage. I am continually scouring my
old posts’ comments and weeding out junk, which for me is always easier to see
from the actual post pages themselves. Having quick and easy access to spam and
delete buttons has made my comment management routine considerably easier.

To add this functionality, we take advantage of the functions.php file by adding
the following script:

<?php // spam & delete links for all versions of WordPress

function delete_comment_link($id) {

268

 if (current_user_can('edit_post')) {

 echo '| <a href="'.get_bloginfo('wpurl').'/wp-admin/comment.php?a
ction=cdc&c='.$id.'">Delete ';

 echo '| <a href="'.get_bloginfo('wpurl').'/wp-admin/comment.php?a
ction=cdc&dt=spam&c='.$id.'">Spam';

 }

} ?>

Place this function in your theme’s functions.php file, and then call the function by
adding the following code to the desired location in your comments.php file:

<?php delete_comment_link(get_comment_ID()); ?>

And that’s all there is to it! Depending on the placement of the function call,
your comments area should now feature quick and easy “spam” and “delete”
buttons next to each individual comment. Even better, this improved function is
version-independent, backwards-compatible, and thus will work for any version
of WordPress.

7.4.8 Display Comment, Ping/Trackback Counts
One more trick before we dig into optimization. Here is a way to easily display
the number of comments, pingbacks, and trackbacks for each of your posts. Open
your theme’s single.php file and add the following parameters to your comments_
template() tag:

<?php comments_template('/comments.php', true); ?>

Then to display the counts, simply use any of the following snippets in your
comments template:

269

<?php global $wp_query; // this line required for any of the following ?>

<?php // pingback and trackback count
 echo count($wp_query->comments_by_type['pings']); ?>

<?php // trackback count
 echo count($wp_query->comments_by_type['trackback']); ?>

<?php // pingback count
 echo count($wp_query->comments_by_type['pingback']); ?>

<?php // comment count
 echo count($wp_query->comments_by_type['comments']); ?>

7.5.1 Optimizing the Comment Form
As we improve the quality of our readers’ comments, let’s not forget about the
comment form itself. There are many ways to improve the functionality and
appearance of your comment form, including adding a preview feature, rich-text
editor, and anti-spam functionality. Let’s dig in!

7.5.2 Set up Comment Previews
Encourage your visitors to contribute to the conversation by
helping them preview their comments before submission. By
adding a comment-preview feature to your comment area,
you provide readers with a powerful tool for eliminating

Unstyled Forms

Even very well-marked-up
forms look like crap without
CSS. Whaddyagonnado?

Just Numbers

Each of these tags outputs a
number, namely the number of
pings, trackbacks, pingbacks,
and comments, respectively.

WordPress 3.0 makes it easier than ever to include comment forms in
your themes. Simply add the following tag to your comments.php file:

<?php comment_form(); ?>

Learn more about this tag at the WP Codex: http://digwp.com/u/498

Drop-Dead Easy Comment Forms

http://digwp.com/u/498

270

errors, reducing noise, and increasing quality. And best of all, adding comment-
preview to your site is as easy as installing and configuring one of these plugins:

• Ajax Comment Preview http://digwp.com/u/2
Provides an excellent Ajax-powered comment-preview plugin that works and
feels great. Admin Options page lets you specify formatting options.

• Ajax Force Comment Preview http://digwp.com/u/194
This plugin takes the utility of comment previews one step further by actually
“forcing” commentators to preview their comments before submission. The
plugin takes advantage of Ajax to avoid the need for a page refresh. Features
built-in anti-spam functionality.

• jQuery Comment Preview WordPress Plugin http://digwp.com/u/40
jQuery Comment Preview uses the jQuery library to generate built-in comment
previews that do not require refreshing the page. Includes Admin Options page.

• Live Comment Preview http://digwp.com/u/39
Live Comment Preview provides a “smooth live preview as you type.” This cool
plugin makes live comment previews super easy – simply activate and enjoy. No
Ajax required – works completely in the browser.

• Really Simple Live Comment Preview http://digwp.com/u/41
A do-it-yourself tutorial that has received a lot of attention. The author keeps
the article updated with the latest code and improvements, so if you need to
implement a custom live-comment-preview solution, be sure to check it out.

• Filosofo Comments Preview http://digwp.com/u/42
This well-built plugin works great with many WordPress themes and even works
with WordPress-2.7’s new threaded comments feature. Includes Admin Options
page for complete control over appearance and functionality.

7.5.3 Rich-Text Editors for Comments
Out of the box, most WordPress themes provide a plain <textarea> for comments.
This may work fine for savvy users who are familiar with a bit of HTML to add some

http://digwp.com/u/2
http://digwp.com/u/194
http://digwp.com/u/40
http://digwp.com/u/39
http://digwp.com/u/41
http://digwp.com/u/42

271

structure to their comments, but what about the average visitor who may not
realize that such markup is possible.

Fortunately, there are many options available for enabling your visitors to style
their comment with simple markup using a rich-text editor. Let’s look at some of
the best rich-text editors and plugins available for your comment form:

• TinyMCEComments http://digwp.com/u/46
TinyMCEComments transforms your comment textarea into a full-featured
WYSIWYG rich-text editor using WordPress’ bundled TinyMCE library (WordPress
2.0 and up).

• TinyMCE http://digwp.com/u/47
TinyMCE is a popular open-source rich-text editor that is easy to integrate with
your site. Highly customizable with themes and plugins. International language
support, multiple browser support, Ajax support, and more. One of the best.

Include Comments on Non-Single Pages
Normally, WordPress will only display your comments template file, comments.php, when called from your theme’s single.php or any
page.php file. This makes it possible to display comments on single posts and pages, but for archive views such as categories and
indexes, you need to add a variable into the mix. Here’s how to display a comments template in any archive or index page.

Replace your regular comments_template() tag – you know, the tag used to call your comments.php file – with this one:

<?php global $withcomments; $withcomments = true; comments_template("/custom-comments.php"); ?>

This will include the file named “custom-comments.php” and use its contents to display your comments. Nice!

Alternately, if you are only displaying a single post on, say, your index page, you can simply include your comments template
within the loop:

<?php while (have_posts()) : the_post(); ?>
 <?php comments_template(); ?>
<?php endwhile; ?>

http://digwp.com/u/46
http://digwp.com/u/47

272

• CKEditor http://digwp.com/u/48
CKEditor (recently changed from FCKEditor) is another popular open-source
rich-text editor that is easy to integrate with your site. This awesome editor
includes image-uploading, layout templates, custom styles, and even Adobe AIR
support. Works and looks great in all modern browsers. Four stars!

• WidgEditor http://digwp.com/u/49
WidgEditor is an easy-to-use open-source rich-text editor by Cameron Adams.
This is not a plugin, but is a breeze to implement. Uses clean, easy-to-read
JavaScript that degrades gracefully.

• MarkItUp! http://digwp.com/u/50
MarkItUp! is a rich-text editor built on top of jQuery. Includes Ajax live preview,
keyboard-shortcut support, and weighs only 6.5kb. An excellent solution for
transforming any HTML textarea into a full-featured WYSIWYG text editor.

• Damn Small Rich Text Editor http://digwp.com/u/51
Damn Small Rich Text Editor is a free, lightweight rich-text editor designed to
work with jQuery and PHP. Includes image-uploading capabilities and is plugin-
enabled.

• WMD: The WYSIWYM Markdown Editor http://digwp.com/u/52
“What You See Is What You Mean” uses the Markdown language to mark up
comments, which then transforms into HTML when the comment is saved.
Comes with a nice editor bar as well as automatic live comment previews.

7.5.4 Adding Comment Quicktags
One of the best ways to enhance the functionality of WordPress comments is to
implement comment quicktags. Quicktags are JavaScript buttons included with the
comment form that provide shortcuts to a variety of common markup elements.
While typing their comments, users may want to use some bold or emphasized
text, or maybe even drop a killer blockquote or a few lines of code.

Comment quicktags enable commentators to format their comment with the
appropriate markup easily with the click of a button. It’s a great feature that makes

Rich Text Editors

For more RTE choices, check
out " Rich-Text Editors for
2010 and Beyond" at Six
Revisions:

http://digwp.com/u/496

http://digwp.com/u/48
http://digwp.com/u/49
http://digwp.com/u/50
http://digwp.com/u/51
http://digwp.com/u/52
http://digwp.com/u/496

273

leaving a comment so much fun. Sound good? Here are some comment-quicktag
plugins to make it happen:

• LMB^Box Comment Quicktags http://digwp.com/u/43
The LMB^Box Comment Quicktags plugin adds a Quicktag Toolbar directly
above the comment form’s text area. The LMB^Box Quicktag Toolbar looks and
functions exactly like the toolbar used in the WordPress Admin area, and may
be styled to fit your site’s design. The toolbar provides quicktags for strong/
bold, em/italic, code, blockquote, and links tags by default, and the set of
buttons is completely configurable via its Admin Options page.

• Comment Quicktags http://digwp.com/u/44
Inserts an expandable quicktag toolbar above the WordPress comment form.
You can customize the default CSS styles and add your own (X)HTML buttons,
all from within a handy admin interface. Very nice.

Display Comments in Descending Order
By default, WordPress displays comments in chronological order: oldest comments first, newest comments last. To reverse this
order, we can take advantage of PHP’s awesome array_reverse function. Here’s how:

1. Place the following code directly before your comment loop:

<?php $comments = array_reverse($comments, true); ?>

2. Your comment loop should now look similar to this:

<?php $comments = array_reverse($comments, true); ?>
<?php foreach ($comments as $comment) : ?>
 <?php comment_author_link(); ?>
 <?php comment_text() ?>
<?php endforeach; ?>

That’s it! Your comments are displayed in reverse chronological order.

http://digwp.com/u/43
http://digwp.com/u/44

274

• Comment Form Quicktags http://digwp.com/u/45
This plugin inserts quicktags of the admin page to the upper part of textarea of
the comment form. Provides easy tag configuration via the WordPress Admin.

• Comment Quicktags Reloaded http://digwp.com/u/195
A slightly modified version of Owen Winkler’s Comment Quicktags plugin. If the
original Comment Quicktags plugin is breaking your theme, try this version.

7.5.5 Comment Management and Spam Prevention
Properly managing your comments can be as time-consuming as it is important.
Sites with carefully managed comments sections are miles apart from sites that
don’t. But it takes time, patience, and a good amount of attention to detail.

Fortunately, when it comes to monitoring, moderating, and pruning comments,
there are plenty of awesome plugins to help automate, improve, and enhance
the process of filtering out spam and encouraging comments. We explore some of
these tools in the final three sections of this chapter.

7.6.1 Controlling Comment Spam
Ahh yes. The wonderful world of comment spam. By now, we assume that
everyone is well-acquainted with the never-ending and utterly hellish spam battle.
It rages constantly, with desperate Viagra and Cialis spammers seeking every
opportunity to flood your otherwise pristine comments area with a truckload of
their stinky garbage. Eww…

Fortunately, all of the smart people are on our side, and there are many talented
developers who continue to fight spam on the front lines. Fortunately, because
of the popularity of WordPress, we enjoy a vast arsenal of effective anti-spam
techniques for our sites. Let’s explore some of the best.

http://digwp.com/u/45
http://digwp.com/u/195

275

7.6.2 WordPress’ Built-In Anti-Spam Functionality
With all of the excellent plugins available, many users don’t realize that WordPress
provides some powerful tools for controlling spam right out of the box. Within the
Discussion page of the WordPress Admin area, there are several options that are
useful for controlling comments and preventing spam. Let’s take a quick look at
each these options.

• Default Article Settings - If you don’t need comments on your site, disable
them. Completely disabling comments is a sure-fire, bulletproof way to
eliminate all comment spam.

• Users must be registered and logged in to comment - One way to allow
comments but eliminate 90% (or more) of spam is to require the user to be
registered and logged-in to your site before commenting.

• Before a comment appears - An administrator must always approve the
comment. If you have the time, this is another good way to ensure that no spam
comments appear on your site.

• Before a comment appears - Comment author must fill out name and e-mail.
This may not do much for fighting spam, but it will discourage some of the
lazier folks from commenting.

No Plugins, No Spam

It’s true. By carefully crafting
your WordPress blog’s built-in
comment settings, it is entirely
possible to run a virtually
spam-free site with absolutely
no plugins whatsoever. – Not
even Akismet. Read more at:

http://digwp.com/u/416

http://digwp.com/u/416

276

• Before a comment appears - Comment author must have a previously
approved comment. This is an effective way to prevent spam, although it does
require some time on busier sites.

• Auto-close Comments - Spammers often target older posts. Auto-closing
comments on old posts helps reduce overall spam.

• Hold a comment in the queue if it contains “x” or more links - As it says,
this is a great way to screen any comments that have too many links. How many
is up to you.

• Comment Moderation Blacklist - This is a regular-expression blacklist of
terms that will kick suspect comments into the moderation queue. Load this
puppy up with all your favorite spam words – cialis, xanax, vicodin, viagra, etc. –
and gain more control over your site’s comments.

• Comment Spam Blacklist - Similar to the Moderation Blacklist, the Spam
Blacklist features a list of regular expressions that will throw the comment
into the spam bin. Be careful of the words that you include in this list, because
anything that matches is essentially discarded.

7.6.3 Anti-Spam Plugins for WordPress
• Akismet http://digwp.com/u/95

One of the best. Requires registration key. Easy to use. Bundled with WordPress.
Excellent spam protection. ‘Nuf said.

• Defensio Anti-Spam http://digwp.com/u/96
Advanced spam-filtering web-service that adapts to your blog’s behavior.
Features statistics, feeds, and spam counters. Not to be used with any other
anti-spam plugins. If Akismet isn’t cutting it for you, try Defensio.

• Peter’s Custom Anti-Spam http://digwp.com/u/97
CAPTCHA-based anti-spam plugin. Forces all commentators to identify a random
word before comment submission. Words are displayed as images and are
completely customizable.

Blacklist Ninja

For a highly effective, custom
blacklist of regular expressions
for your site’s Comment
Moderation or Spam Blacklist,
drop by Perishable Press and
grab a copy:

http://digwp.com/u/196

http://digwp.com/u/95
http://digwp.com/u/96
http://digwp.com/u/97
http://digwp.com/u/196

277

• JSSpamBlock http://digwp.com/u/197
JavaScript-based anti-spam plugin. Uses JavaScript to filter out spam quietly and
discretely. Users without JavaScript must prove their legitimacy via numerical
CAPTCHA exercise.

• bcSpamBlock http://digwp.com/u/98
Another good JavaScript-based anti-spam plugin that uses JavaScript to filter
out spam quietly and discretely. Users without JavaScript must prove their
legitimacy via copy-&-paste CAPTCHA exercise.

• reCAPTCHA Plugin http://digwp.com/u/99
Displays words from old books that users must correctly interpret. Uses the
popular reCAPTCHA service that is used on popular sites such as Twitter,
Facebook, and StumbleUpon. Upside: use of this service helps to digitize old
books. Downside: requires a key to work.

• Challenge http://digwp.com/u/100
CAPTCHA-based anti-spam plugin that provides a variety of challenge questions
that the user must answer correctly before comment submission. Bonus:
includes Admin Options page.

• Comment Spam Stopper http://digwp.com/u/101
CAPTCHA-based anti-spam plugin that also contains JavaScript validation to
ensure that required fields in the comment form have been populated with
data.

• WP-HashCash http://digwp.com/u/102
CAPTCHA-based anti-spam plugin that claims to be 100% effective. JavaScript is
required to generate a secret number that is verified by the plugin script.

• Word Verify http://digwp.com/u/103
CAPTCHA-based anti-spam plugin that includes its own configuration options.

• Simple Trackback Validation http://digwp.com/u/104
Simple Trackback Validation provides solid protection against trackback spam. If
your site suffers from relentless rounds of trackback spam, this plugin is for you.

http://digwp.com/u/197
http://digwp.com/u/98
http://digwp.com/u/99
http://digwp.com/u/100
http://digwp.com/u/101
http://digwp.com/u/102
http://digwp.com/u/103
http://digwp.com/u/104

278

• Referrer Bouncer http://digwp.com/u/105
Referrer Bouncer provides powerful protection against referrer spam. Easy to
use and requires no configuration. If referrer spam has got you down, check out
this plugin.

• ProtectWebForm Captcha http://digwp.com/u/106
CAPTCHA-based anti-spam plugin designed with usability in mind. Provides a
way for users to refresh the CAPTCHA or even listen to a recorded version. Also
enables users to customize the CAPTCHA image.

• Did You Pass Math? http://digwp.com/u/107
CAPTCHA-based anti-spam plugin that requires the user to successfully solve a
random math problem. We’re talking simple math here – no algebra required.

• Comment Spam Trap http://digwp.com/u/108
Comment Spam Trap employs two different filtering methods for stopping
comment spam. Simple yet effective.

• Spam Free http://digwp.com/u/109
Spam Free is a powerful anti-spam plugin that virtually eliminates automated
comment spam. Recommended.

• Cookies for Comments http://digwp.com/u/110
Uses a cookie-method to drastically reduce the amount of spam that makes it
through to your site. Very effective.

7.7.1 Other Considerations & Techniques
Clearly, the WordPress comments area is one of the most highly configurable and
flexible parts of the entire application. To round out the chapter, here are a few
more considerations that will help you maximize your comments area to its
fullest potential.

http://digwp.com/u/105
http://digwp.com/u/106
http://digwp.com/u/107
http://digwp.com/u/108
http://digwp.com/u/109
http://digwp.com/u/110

279

7.7.2 Enhancing and Encouraging Comments
As we have seen, there are many ways to enhance and encourage comments on
WordPress-powered sites. In addition to the numerous methods covered so far,
there are also many ways to advance comment functionality using plugins. With
WordPress, there is a plugin for just about anything and everything, and the
comment area is no exception. In this section, we present some of the most useful
and beneficial plugins for enhancing and encouraging comments on your site.

• @ Reply http://digwp.com/u/198
This plugin automates the process of replying to comments using the “@
commentator” convention. Instead of manually typing the “@commentator” for
each reply, simply click on the “Reply” link of the original comment and the @
Reply plugin will automagically include a “@commentator” link in your comment’s
textarea. This facilitates the process of replying to other comments, encourages
readers to participate in the conversation, and enhances the usability of your
comments area.

• Keyword Luv http://digwp.com/u/199
The Keyword Luv plugin rewards your commentators by separating their name
from their keywords in their website link. This enables commentators to leave their
name without sacrificing the keywords they want for the link to their website.
From an SEO perspective, more focused and relevant anchor text benefits their site
and thus encourages additional comments.

• CommentLuv http://digwp.com/u/200
CommentLuv creates a titled link to the commentator’s most recent post. This
encourages comments by giving commentators a general site link and a more
specifically targeted post link. CommentLuv also enables click-tracking and provides
statistics at commentluv.com.

http://digwp.com/u/198
http://digwp.com/u/199
http://digwp.com/u/200
http://commentluv.com

280

7.7.3 “nofollow” Links
In January of 2005, Google began pushing a new “nofollow” attribute for anchor
elements. Soon thereafter, MSN and Yahoo!, along with other lesser search
companies, also began support for the new nofollow attribute. The nofollow
attribute is utilized as follows:

<a href="http://domain.tld/" title="Example of a nofollow link"
 rel="nofollow">This is a nofollow link

Links including the nofollow attribute are flagged by supportive search engines
as not being endorsed by the site owner and/or author of the page content. The
search engines then proceed to treat the link as follows:

• nofollow links will not be followed through to the next page

• nofollow links will not be included in the calculation of page rank (Google
recently announced that they do include nofollow links when determining PR)

• nofollow links will not include the anchor text in determining the linked page’s
relevant keywords

Basically, a nofollow link will be ignored by MSN/Bing and Yahoo!, and partially
ignored by Google. Many SEO-savvy people selectively employ nofollow attributes
to influence the flow of link equity throughout their site. An extreme example
of this is seen when sites decide to hoard page rank by not sharing it with other
websites. By “nofollowing” all links that point to external sites, such sites retain the
flow of link juice within their own domain and theoretically improve the value of
their own pages.

Unfortunately for many SEOs, this strategy no longer works as it once did with
Google, whose policy is now such that link equity not transferred through nofollow
links is no longer redistributed to the source page. Nofollow remains a useful tool,
but it is no longer effective for conserving page rank with the world’s biggest
search engine.

Google + Nofollow

Confused about Google’s new
nofollow policy? Here are
some great sources for more
information:

http://digwp.com/u/201
http://digwp.com/u/202
http://digwp.com/u/203

http://digwp.com/u/201
http://digwp.com/u/202
http://digwp.com/u/203

281

In any case, not too long after nofollow was established, the WordPress
development team decided to implement the nofollow attribute into the
comments display area. By adding nofollow attributes to every link in the
comments area, WordPress was heeding Google’s recommendation that nofollow
attributes should be included on any publicly placed links. Thus, every comment-
related link is now a nofollow link; this includes author links, pingbacks,
trackbacks, and even links within comments themselves.

Unfortunately, not everyone is thrilled about the idea of nofollow. In fact, four
years after the creation of the nofollow attribute, an uprising of “dofollow”
bloggers and supporters has grown into a full-fledged movement. The central
idea behind the dofollow movement is that commentators deserve credit for the
links they use when taking the time to comment on your site. By slapping your
commentators’ links with nofollow attributes, you remove incentive and diminish
the reward of commenting on your site. Or so the argument goes. You know, “it’s
like, be cool man, and share the link love with your fellow bloggers.”

So, if you find yourself agreeing with the dofollow blogging movement and think
that punishing commentators with nofollow links is just plain wrong, then you
will definitely want to remove the nofollow attributes that WordPress places on
comment links. Fortunately, there are plenty of great plugins to help you do this.
Here are a few of the best:

• DoFollow http://digwp.com/u/205
One of the first WordPress dofollow plugins, DoFollow has evolved into a highly
flexible method for nofollow removal. The admin option page is clear, simple,
and provides granular control over all options. This plugin is ideal for users of all
experience levels and provides control over many important aspects of dofollow
strategy. Excellent for distinguishing between comment links, trackbacks, and
pingbacks. Highly recommended.

• Lucia’s Linky Love Plugin http://digwp.com/u/206
Lucia’s Linky Love provides the greatest amount of control over SEO-related
aspects of the nofollow-removal process. Although the admin options page may
prove confusing for novice users, those familiar with basic principles of SEO will

Dofollow Plugin Library

For a complete review of all
currently available WordPress
dofollow plugins, check out
Perishable Press:

http://digwp.com/u/204

http://digwp.com/u/205
http://digwp.com/u/206
http://digwp.com/u/204

282

find everything they need to control the flow of comment link love throughout
their site. If you are looking for a versatile, customizable dofollow plugin,
Lucia’s Linky Love is one of the best.

• NoFollow Free http://digwp.com/u/207
NoFollow Free provides many options currently unavailable anywhere else.
Beyond the ability to display the number of comments for each author, require
a minimum number of comments for nofollow-removal, and specify which
types of comments to follow, NoFollow Free also features a customizable
nofollow blacklist for spam words. Plus, NoFollow Free throws in an optional
“NoFollow Free” image band just to seal the deal. Overall, NoFollow Free is
a comprehensive solution that provides robust functionality for the effective
implementation of your nofollow-removal strategy. Five Stars.

7.7.4 Integrating Twitter
Last but not least, we want to look at some of the many ways to integrate
everybody’s favorite new microblogging service, Twitter! We love to Twitter almost
as much as we love to create beautiful, modern sites with WordPress. And so
naturally we are thrilled to have such a wonderful variety of plugins enabling us to
combine the two. Let’s have a look at some of the best…

• TweetSuite http://digwp.com/u/208
The TweetSuite plugin integrates Twitter with a host of useful tools, including
everything from server-side TweetBacks and automatic post tweets to Tweet-
This buttons and widget functionality. Recommended for serious Twitter fans
who love WordPress.

• Tweet This http://digwp.com/u/209
Short and sweet: Tweet-This buttons on every post. Perfect for sharing your
posts on Twitter.

• WP Twitip ID http://digwp.com/u/210
This plugin makes it possible for users to add their Twitter name along with

http://digwp.com/u/207
http://digwp.com/u/208
http://digwp.com/u/209
http://digwp.com/u/210

283

the usual comment information, such as name and URL. This provides incentive
for readers to comment while enhancing the personalization of the comment
display area.

• TwiBadge http://digwp.com/u/211
TwiBadge makes it easy to display your Twitter badge, which includes your
latest tweets, subscriber count, and more. The badge supports both widgetized
and non-widgetized themes, and is equipped with shortcode for easy insertion.

• The Twitter Updater http://digwp.com/u/212
The Twitter Updater automatically sends tweets to your Twitter account every
time you publish or edit one of your posts. Includes Admin panel that enables
you to customize the tweets and disable either type of post update.

• TwitThis http://digwp.com/u/213
TwitThis makes it easy for readers to share your posts on Twitter by clicking on
the automatically generated “TwitThis” links for each post. Before the URL of
your post is sent to Twitter, it is shortened via URL-shortening service, TinyURL.

• Twitter Tools http://digwp.com/u/214
Twitter Tools boasts “complete integration” between WordPress and Twitter,
enabling you to tweet blogs, blog tweets, and much more. Full Admin options
makes it easy to customize.

• Twitter Wordpress Sidebar Widget http://digwp.com/u/215
This plugin makes it easy to share your Twitter updates in your sidebar. Each
status update is linked, and there are several great customization options.

• Twitter Feed http://digwp.com/u/216
Uses the Twitterfeed service (requires OpenID account) and your site’s RSS feed
to automatically post your blog updates to your Twitter account.

• Twitt-Twoo http://digwp.com/u/217
Ever wanted to update your Twitter status from your sidebar? You’re not alone.
The Twitt-Twoo plugin makes this possible using the magical powers of Ajax.

Stupid Twitter Tricks

There’s nothing stupid about
the awesome collection of
custom Twitter tricks now
available at Perishable Press:

http://digwp.com/u/420

@Anywhere

Twitter has a JavaScript
library for integrating Twitter
features into other websites. It's
a little more involved than a
plugin but the possibilities are
very cool, like making
@usernames automatically
pop up "cards" with that
users information and a
follow button.

http://digwp.com/u/469

http://digwp.com/u/211
http://digwp.com/u/212
http://digwp.com/u/213
http://digwp.com/u/214
http://digwp.com/u/215
http://digwp.com/u/216
http://digwp.com/u/217
http://digwp.com/u/420

284

And so…
In this action-packed chapter, we have explored the WordPress comment system in
considerable depth. With such incredible flexibility, amazing customizations, and
awesome plugins available to you, transforming your WordPress Comments Area
into a beautiful, well-optimized, user-friendly response system is at your fingertips.

Of course, the greatest comment system in the world is of no use if nobody
can find your site. In the next chapter, we dig into the fine art of search-engine
optimization and explore many useful and effective techniques for doing well in
the search engines.

Chris’ personal blog (next page) uses some art
direction to apply styling appropriate to the content

of individual Posts.

http://chriscoyier.net/

http://chriscoyier.net/

285

286

I don’t know the key to success,

but the key to failure is trying to

please everybody.

– B I L L C O S B Y

8.1.1 SEO Strengths and Weaknesses
Out of the box, WordPress provides great flexibility in terms of organizing and
managing your blog’s content. Much of this flexibility comes by way of WordPress’
category and tag architecture. Each and every post created on your blog may be
assigned to any number of both categories and tags.

Categories are meant to classify content according to broad definitions, while
tags are used to classify content more specifically. For example, a post about your
favorite movies may be categorized in the “Favorite Movies” category, while being
tagged for some of the movies featured in the article: “Star Wars,” “The Matrix,”
and “Blade Runner.”

Beyond this central organizing principle, WordPress brings with it many strengths
and weaknesses in terms of how content is organized and made available to both
users and the search engines. Let’s examine some of these SEO factors before
digging into the fine art of optimizing your WordPress-powered site for the
search engines.

8.1.2 Strong Focus on Content
Content, as they say, is king. The Web exists because of it. Users are searching for
it. Search engines are built on it. In order to succeed on the Web, your site should
be focused on delivering useful content above all else. Awesomely, one of the main
goals of WordPress is to make publishing content as easy as possible.

287

Search Engine Optimization8

288

Once WordPress is set up, getting your content online happens as fast as you can
create it. On the front end, there are hundreds of top-quality themes available,
each focused on organizing and presenting your content with both users and
search engines in mind.

8.1.3 Built-In “nofollow” Comment Links
Perhaps not as useful as originally conceived, nofollow attributes placed on
commentator links have long been thought of as an effective method of improving
the SEO-quality of WordPress-powered sites. For those of you who may be
unfamiliar with the whole “nofollow” thing, for now suffice it to say that nofollow
attributes are placed on links to prevent search engines from following those links
to their targets. Originally, this was intended to serve as a way to conserve valuable
page rank, but after it was revealed that this method no longer works, nofollow
commentator links may be a moot point. We’ll discuss this more in-depth later on
in the chapter.

8.1.4 Duplicate Content Issues
While the organizational strengths of WordPress are great for managing content, it
also comes with a price: duplicate content. Duplicate content is essentially identical
content appearing in more than one place on the Web. Search engines such as
Google are reported to penalize pages or sites associated with too much duplicate
content. Returning to our movie example for a moment, our WordPress-powered
site may suffer in the search rankings because identical copies of our movie article
are appearing at each of the following URLs:

• original article -> http://example.com/blog/my-favorite-movies/

• category view -> http://example.com/blog/category/favorite-movies/

• star-wars tag view -> http://example.com/blog/tag/star-wars/

• the-matrix tag view -> http://example.com/blog/tag/the-matrix/

• blade-runner tag view -> http://example.com/blog/tag/blade-runner/

WordPress + nofollow

Check out Chapter 7.7.3 for
more information on nofollow,
WordPress, and the search
engines.

289

Yikes! And if that weren’t bad enough, we also see the exact same post content
appearing at these URLs:

• daily archive view -> http://example.com/blog/2009/02/02/

• monthly archive view -> http://example.com/blog/2009/02/

• yearly archive view -> http://example.com/blog/2009/

• author archive view -> http://example.com/blog/author/your-name/

Depending on your particular WordPress theme, this situation could be even worse.
By default, all of your posts are available in identical form at each of the previous
types of URLs. Definitely not good from a search-engine point of view. Especially if
you are the type of blogger to make heavy use of tags, the number of duplicated
posts could be staggering.

8.2.1 Controlling Duplicate Content
Fortunately, WordPress’ poor handling of duplicate content is easily fixed. In fact,
there are several ways of doing so. In a nutshell, we have plenty of tools and
techniques at our disposal for winning the war on duplicate content:

• meta nofollow tags

• meta noindex tags

• nofollow attributes

• robots directives

• canonical meta tags

• use excerpts for posts

So what do each of these sculpting tools accomplish and how do they help us
eliminate duplicate content? Let’s take a look at each of them.

290

8.2.2 Meta noindex and nofollow Tags
Meta nofollow tags are actually inline link elements located in the <head> section
of your WordPress pages. For example, in your blog’s “header.php” file, you may
find something like this:

<meta name="googlebot" content="index,archive,follow" />

<meta name="msnbot" content="all,index,follow" />

<meta name="robots" content="all,index,follow" />

This code tells search engines – specifically, Google, MSN/Bing, and any other
compliant search engine – that the entire page should be indexed, followed, and
archived. This is great for single post pages (i.e., the actual “My Favorite Movies”
article posted in our example), but we can use different parameters within these
elements to tell the search engines not to index, follow, or archive our web pages.

Ideally, most bloggers want their main article to appear in the search results. The
duplicate content appearing on the other types of pages may be controlled with
this set of meta tags:

<meta name="googlebot" content="noindex,noarchive,follow" />

<meta name="robots" content="noindex,follow" />

<meta name="msnbot" content="noindex,follow" />

Here, we are telling the search engines not to include the page in the search
engine results, while at the same time, we are telling them that it is okay to
crawl the page and follow the links included on the page. This prevents the page
from appearing as duplicate content while allowing link equity to be distributed
throughout the linked pages. Incidentally, we may also tell the search engines to
neither index nor follow anything on the page by changing our code to this:

<meta name="googlebot" content="noindex,noarchive,nofollow" />

Love Juice

Anyone dipping into the murky
waters of SEO will inevitably
discover that there are many
ways to refer to the SEO value
of web pages. PR, Page rank,
link equity, link juice, page
juice, link love, love juice, rank
juice, and just about any other
combination of these terms
is known to refer to the same
thing: the success of a web
page in the search engines.

291

<meta name="robots" content="noindex,nofollow" />

<meta name="msnbot" content="noindex,nofollow" />

So, given these meta tags, what is the best way to use this method to control
duplicate content on your WordPress-powered site? We’re glad you asked. By using
a strategic set of conditional tags in the “header.php” file for your theme, it is
possible to address search-engine behavior for virtually all types of pages, thereby
enabling you to fine-tune the indexing and crawling of your site’s content. To see
how this is done, consider the following code:

<?php if(is_home() && (!$paged || $paged == 1) || is_single()) { ?>

 <meta name="googlebot" content="index,archive,follow,noodp" />

 <meta name="robots" content="all,index,follow" />

 <meta name="msnbot" content="all,index,follow" />

<?php } else { ?>

 <meta name="googlebot" content="noindex,noarchive,follow,noodp" />

 <meta name="robots" content="noindex,follow" />

 <meta name="msnbot" content="noindex,follow" />

<?php } ?>

Tell Search Engines not to Index a Specific Post
In this section we see how to disable search-engine indexing for different categories, archives, pages, and other page views, but
what if we want to prevent indexing of only one specific post? There are several SEO plugins that enable this functionality, but you
don't really need one to do it. All you need to do is get the ID of the post for which you would like to disable indexing. Then, open
your theme’s header.php file and place this snippet within the <head> section:

<?php if ($post->ID == 77) { echo '<meta name="robots" content="noindex,noarchive">'; }

Change the ID from “77” to the ID of your post and done! With this in place, compliant search engines such as Google and MSN/
Bing will neither index nor archive the specified post (ID #77 in this example).

292

The conditional PHP tags used in this example effectively are saying: “If the current
page is the home page or the single post page, then allow the search engines to
both index and follow the content of the page; otherwise, since the page is neither
the home page nor the single post page, it is probably a tag page, category page,
or other archive page and thus serves as duplicate content; therefore tell the search
engines to follow all links but not index the content.”

Of course, it isn’t always a bad thing to have some peripheral pages indexed in the
search engines. In addition to having their home page and single pages indexed (as
in our example above), many people prefer to have either tag pages or category
pages (or both!) indexed in the search engines as well. In reality, the types of pages
that you want indexed are completely up to you and your personal SEO strategy.

Prevent Duplicate Content Caused
by Paginated Comments
Since WordPress 2.7, comments may be paginated, such that “x” number of comments appear on each page.
While this is a step in the right direction, there may be a duplicate content issue resulting from the fact that
your post content will appear on every page of your paginated comments. To resolve this issue, place the
following code into your functions.php file:

// prevent duplicate content for comments
function noDuplicateContentforComments() {
 global $cpage, $post;
 if($cpage > 1) {
 echo "\n".'<link rel="canonical" href="'.get_permalink($post->ID).'" />'."\n";
 }
}
add_action('wp_head', 'noDuplicateContentforComments');

This code will generate canonical <head> links for your all of your paginated comments. The search engines
will then use this information to ensure that the original post permalink is attributed as the actual article.

Further Information

For more information and techniques on paged comments and
duplicate content, check out Chapter 7.3.3.

293

So, if you would like to include both tag and category pages
in the search results, you would simply modify the first line
of our previous example like so:

<?php if(is_home() && (!$paged || $paged == 1) || is_
 category() || is_tag() || is_single()) { ?>

8.2.3 Nofollow Attributes
Another useful tool in the fight against duplicate WordPress
content is the controversial “nofollow” attribute. The
nofollow attribute is placed into hyperlinks like this:

<a href="http://domain.tld/path/target/"
 rel="nofollow">This is a "nofollow" hyperlink

Links containing the nofollow attribute will not be
“followed” by Google, but may still be indexed in the search
results if linked to from another source. Because such links
are not followed, use of the nofollow attribute is an effective
tool in the reduction and prevention of duplicate content.

For an example of how nofollow can be used to help
eliminate duplicate content, let’s look at a typical author
archive. In the author-archive page view, you will find
exact replicas of your original posts (unless you are using
excerpts). This duplicate content is highly avoidable by
simply “nofollowing” any links in your theme that point to
the author-archive page view. Here is how the nofollow link
would appear in your theme files:

<a href="http://domain.tld/author/author-name/"
rel="nofollow">This link will not be followed to the
author archive

Exclude Admin Pages
from Search Engines
You may also replace or add other types
of pages to your meta-tag strategy by
using any of the following template tags:

• is_home() • is_page()

• is_admin() • is_author()

• is_date() • is_search()

• is_404() • is_paged()

• is_category() • is_tag()

• is_date()

To target any date-based archive page
(i.e. a monthly, yearly, daily or time-based
archive) that is being displayed, use this:

• is_archive()

Remember, there are more than just
date-based Archives. Other types of
Archive pages include sequential displays
of category, tag, and author pages.
is_archive() will target all of these page
types.

And of course there are many more types
of these conditional tags available to
WordPress. See the WordPress Codex for
more information: http://digwp.com/u/3

http://digwp.com/u/3

294

Ever wanted to keep a few specific pages out of the
search engines? Here's how to do it using WordPress’
excellent conditional tag functionality.

Just place your choice of these snippets into the <head>
section of your header.php file and all compliant search
engines (e.g., Google, MSN/Bing, Yahoo!, et al) will
avoid the specified page(s) like the plague.

This menu of snippets provides many specific-case
scenarios that may be easily modified to suit your needs.

Exclude a specific post

<?php if(is_single('17')) { // your post ID number ?>
 <meta name="googlebot" content="noindex,noarchive,follow" />
 <meta name="robots" content="noindex,follow" />
 <meta name="msnbot" content="noindex,follow" />
<?php } ?>

Exclude a specific page

<?php if(is_page('17')) { // your page ID number ?>
 <meta name="googlebot" content="noindex,noarchive,follow" />
 <meta name="robots" content="noindex,follow" />
 <meta name="msnbot" content="noindex,follow" />
<?php } ?>

Exclude a specific category

<?php if(is_category('17')) { // your category ID number ?>
 <meta name="googlebot" content="noindex,noarchive,follow" />
 <meta name="robots" content="noindex,follow" />
 <meta name="msnbot" content="noindex,follow" />
<?php } ?>

Exclude a specific tag

<?php if(is_tag('personal')) { // your tag name ?>
 <meta name="googlebot" content="noindex,noarchive,follow" />
 <meta name="robots" content="noindex,follow" />
 <meta name="msnbot" content="noindex,follow" />
<?php } ?>

Exclude multiple tags

<?php if(is_tag(array('personal','family','photos'))) { ?>
 <meta name="googlebot" content="noindex,noarchive,follow" />
 <meta name="robots" content="noindex,follow" />
 <meta name="msnbot" content="noindex,follow" />
<?php } ?>

Exclude posts tagged with certain tag(s)

<?php if(has_tag(array('personal','family','photos'))) { ?>
 <meta name="googlebot" content="noindex,noarchive,follow" />
 <meta name="robots" content="noindex,follow" />
 <meta name="msnbot" content="noindex,follow" />
<?php } ?>

Exclude Specific Pages from Search Engines

295

Granted, using nofollow links to control duplicate content is not 100% foolproof.
If the author-archive URL is linked to from any “followed” links, that page still
may be indexed in the search engines. For pages such as the author archives
that probably aren’t linked to from anywhere else, nofollow may help prevent a
potential duplicate-content issue.

8.2.4 Robots.txt Directives
Another useful and often overlooked method of controlling duplicate content
involves the implementation of a robots.txt file for your site. Robots.txt files are
plain text files generally placed within the root directory of your domain.

http://domain.tld/robots.txt

Robots.txt files contain individual lines of well-established “robots” directives
that serve to control the crawling and indexing of various directories and pages.
Search engines such as Google and MSN that “obey” robots directives periodically
read the robots.txt file before crawling your site. During the subsequent crawl of
your site, any URLs forbidden in the robots.txt file will not be crawled or indexed.
Keep in mind, however, that pages prohibited via robots directives continue to
consume page rank. So, duplicate content pages removed via robots.txt may still
be devaluing your key pages by accepting any link equity that is passed via
incoming links.

Even so, with other measures in place, taking advantage of robots.txt directives is
an excellent way to provide another layer of protection against duplicate content
and unwanted indexing by the search engines.

Let’s look at an example of how to make a useful robots.txt file. First, review the
default directory structure of a WordPress installation in the screenshot (next page).

For a typical WordPress installation located in the root directory, there is no reason
for search engines to index URLs containing any of the core WordPress files. So we
begin our robots.txt file by writing:

Yahoo! Disobeys

Sadly, when it comes to search
engines that comply with
robots.txt directives, Yahoo!
falls far short:

http://digwp.com/u/218

Not Foolproof

Pages blocked by robots.txt
directives may still appear
within the index if linked to by
“trusted, third-party sources.”

http://digwp.com/u/219

http://digwp.com/u/218
http://digwp.com/u/219

296

Disallow: /wp-*

Disallow: *.php

These two lines tell compliant search engines to ignore any URL beginning with
“http://domain.tld/wp-” or ending with “.php”. Thus, all of our core WordPress
files are restricted and will not be crawled by compliant search engines.

Now, consider some of the types of WordPress-generated URLs that we don’t want
the search engines to follow or index:

http://domain.tld/feed/ - your site's main feed

http://domain.tld/comments/feed/ - your site's comments feed

http://domain.tld/other/feeds/ - every other type of feed

http://domain.tld/post/trackback/ - every trackback URL on your site

http://domain.tld/2008/08/08/ - archive views for every day

http://domain.tld/2008/08/ - archive views for every month

http://domain.tld/2008/ - archive views for every year

Of course, there are other types of pages which we may also wish to exclude
from the search engines, such as category and tag archives, but you get the idea.
To prohibit robots-compliant search engines from accessing and indexing the
miscellaneous pages listed above, we add these directives to our robots.txt file:

Disallow: */feed*
Disallow: */trackback*
Disallow: /20*

297

Taken together, the previous two sets of robots.txt directives give us this:

Disallow: /wp-*
Disallow: *.php
Disallow: */feed*
Disallow: */trackback*
Disallow: /20*

See the pattern here? We use the “Disallow:” directive to restrict the crawling of
any URL matching the specified regular-expression (regex) pattern. But use caution:
regular expressions are powerful stuff, so be sure you know what you are doing
before experimenting on your own.

How to “Allow” Search Engine Access
The “Allow” robots directive is designed to explicitly allow search engine access to specific files. When using wildcards to disallow
entire directories, for example, the Allow directive may be used to override the setting for a specific directory or file. For example,
I use the following robots.txt directives to prevent compliant search engines from accessing anything contained within my Mint
statistics directory:

Disallow: */mint/*

This works great because it keeps Google et al from trespassing where they don’t belong. As it turns out, however, there is one
otherwise affected URL pattern that I want the search engines to access, namely, my downloadable files. Using the Download
Counter Pepper http://digwp.com/u/220 to monitor my site’s downloads, my download URLs are rewritten as follows:

http://perishablepress.com/press/mint/pepper/orderedlist/downloads/download.zip

With my robots.txt directive in place, search engines will never see my downloadable goodies. This is where the awesome Allow
directive comes into play. I now allow access to all of my downloads with a single robots directive:

Allow: */mint/pepper/orderedlist/downloads/*

Now, any download URL otherwise blocked via the previous Disallow directive is now explicitly allowed. Awesome.

http://digwp.com/u/220

298

The regular expressions used here have been tested to work properly via Google’s
Webmaster Tools http://digwp.com/u/222, and essentially inform compliant search
engines to do the following:

• Do not crawl or index any URL beginning with “http://domain.tld/wp-”

• Do not crawl or index any URL ending with “.php”

• Do not crawl or index any URL containing the character string, “/feed”

• Do not crawl or index any URL containing the character string, “/trackback”

• Do not crawl or index any URL beginning with “http://domain.tld/20”

Finally, there are a couple more things that we will need to add to our robots.txt
file in order to make it complete. First, we need to specify which search engines
should apply the directives, so we add this at the very beginning of the file, before
our disallow rules:

User-agent: *

The wildcard operator (*) is used to target all compliant search engines, however,
any specific user-agent may also be specified. For example, to apply our robots.txt
directives only to Google, we would use this instead:

User-agent: Googlebot

With the wildcard operator, however, everyone is included, even Google. In
addition to specifying the user-agent, we may also specify a sitemap to facilitate its
use. Assuming we place our sitemap in the root of our example site, we write:

Sitemap: http://domain.tld/sitemap.xml

Express Yourself

For more help with regular
expressions, check out this
reference from zytrax.com:

http://digwp.com/u/221

XML Sitemap Plugin

Using a sitemap for your site
is an effective way to help the
search engines crawl and index
your content. For an easy way
to set up a sitemap for your
site, check out this
excellent plugin:

http://digwp.com/u/223

http://digwp.com/u/222
http://digwp.com/u/221
http://digwp.com/u/223

299

Combining our robots directives, we place the
following set of directives into our site’s
robots.txt file:

User-agent: *
Disallow: /wp-*
Disallow: *.php
Disallow: */feed*
Disallow: */trackback*
Disallow: /20*

Sitemap: http://domain.tld/sitemap.xml

This is a complete, well-tested set of robots directives
that is optimized for WordPress-powered sites. Far
more simple and equally effective as some of the
other examples seen around the Web.

Just keep in mind that any robots.txt file will only
be obeyed by compliant search engines, which
fortunately includes the two largest, Google and
MSN/Bing.

8.2.5 Canonical Meta Tags
In 2009, the major search engines (Google, MSN/
Bing, Yahoo! and Ask) announced support for
“canonical meta tags.” Canonical meta tags are
designed to tell search engines which URL to count
as the actual, original address of a web page.

For example, if you are running an e-commerce site
that includes multiple URLs all pointing to the same
product, such as these:

Enhancing Permalink
Structure for Better
Performance
When it comes to planning the best permalink strategy for
your site, consider the following quote from the WordPress
Codex:

“For performance reasons, it is not a good idea to start
your permalink structure with the category, tag, author, or
postname fields. The reason is that these are text fields, and
using them at the beginning of your permalink structure
it takes more time for WordPress to distinguish your Post
URLs from Page URLs (which always use the text ‘page slug’
as the URL), and to compensate, WordPress stores a lot of
extra information in its database (so much that sites with
lots of Pages have experienced difficulties). So, it is best to
start your permalink structure with a numeric field, such as
the year or post ID.”

In summary, although it may not matter much for smaller,
low-traffic sites, it is best to keep the following in mind
when choosing the format of your permalinks:

Instead of using something like this:

/%postname%/%post_id%/
/%category%/%postname%/

Get some numbers in there with something like this instead:

/%post_id%/%postname%/
/%year%/%category%/%postname%/

Much better, especially for busy, high-traffic websites.

300

To control indexing and caching of non-(X)HTML content types,
using meta robots directives is not an option. An excellent example
of this involves directing Google to index and cache PDF documents.
The last time we checked, meta tags can’t be added to PDFs, Word
documents, Excel documents, text files, and other non-(X)HTML-
based content. The solution, of course, is to take advantage of the
relatively new HTTP header, X-Robots-Tag.

The X-Robots-Tag header takes the same parameters as used by
meta robots tags. For example:

• index — index the page

• noindex — don’t index the page

• follow — follow links from the page

• nosnippet — don’t display descriptions or cached links

• nofollow — don’t follow links from the page

• noarchive — don’t cache/archive the page

• none — do nothing, ignore the page

• all — do whatever you want, default behavior

…and so on. Within ordinary meta tags, these directives make it
possible to control exactly how search engines handle your (X)
HTML-based web pages. And now, setting these same directives
via the X-Robots-Tag header, it is possible to extend SEO-related
control over virtually every other type of content as well – PDFs,
Word documents, Flash, audio, and video files – you name it!

Implementing X-Robots-Tag functionality for your own files is easy.
For dynamically generated content, such as PHP files, place the
following code at the very top of your page:

// instruct supportive search engines to index and
 cache the page

<?php header('X-Robots-Tag: index,archive'); ?>

Of course, the actual robots parameters will vary, depending on
whether or not the content should be indexed, archived, etc.

To implement X-Robots-Tag directives for non-PHP files, such as
PDF, Flash, and Word documents, it is possible to set the headers
via HTAccess. Customize the following HTAccess script according to
your indexing needs and add it to your site’s root HTAccess file or
Apache configuration file:

index and archive specified file types
<IfModule mod_headers.c>
 <FilesMatch "\.(doc|pdf|swf)$">
 Header set X-Robots-Tag "index,archive"
 </Files>
</IfModule>

There is of course much more that can be done with X-Robots-Tag.
For more information, see Taking Advantage of the X-Robots Tag at
Perishable Press: http://digwp.com/u/4.

X-Robots Meta Directives

http://digwp.com/u/4

301

http://domain.tld/product.php?item=leopard-skin-snuggy
http://domain.tld/product.php?item=leopard-skin-snuggy&category=designer-snuggy
http://domain.tld/product.php?item=leopard-skin-snuggy&trackingid=123&sessionid=456789
http://domain.tld/product.php?item=leopard-skin-snuggy&referrer=chucknorris&id=snuggling-badass

Then placing the following canonical meta tag in the <head> section of each of the
duplicate content URLs will tell the search engines that the duplicates all refer to
the original URL:

<link rel="canonical" href="http://domain.tld/product.php?item=leopard-skin-snuggy" />

With WordPress, canonical meta tags accomplish the same thing: they tell search
engines which version of your pages is the correct one to index. As you can
imagine, this is a powerful tool in the fight against duplicate content, and there
is an excellent plugin by Joost de Valk that makes implementing canonical tags
a snap: http://digwp.com/u/185. There are also manual techniques for setting up
canonical meta tags for WordPress, but the plugin really does a great job, and is
the recommended way to do it.

8.2.6 Use Excerpts for Posts
Another effective technique for preventing duplicate content is to simply use
excerpts instead of full content on all non-single page views. This way, all of those
pages that would otherwise include full copies of your post content will only show
an excerpt instead.

To implement excerpts, replace the_content template tag in your non-single theme
files with the_excerpt template tag. It’s as simple as that.

<?php the_content(); ?> =change to=> <?php the_excerpt(); ?>

Many sites use this technique with great results. Especially when used in
conjunction with a canonical plugin, using excerpts instead of content is perhaps
the easiest, most effective way of keeping duplicate content out of the search
engine results.

Important Note

Currently, canonical meta
tags only serve as a “hint” to
search engines as to which page
should be indexed. Chances are
high that they will obey your
specifications, but they reserve
the right to take other factors
into account and make their
own decisions.

http://digwp.com/u/185

302

8.3.1 Optimizing Permalink Structure
One of the great things about WordPress is its “pretty” permalinks. Permalinks
refer to a particular formatting of the URL structure for a site’s web pages. By
default, WordPress generates dynamic page URLs of the format http://digwp.com/
index.php?p=123, but then makes it super-easy to transform these structures into
more user-friendly format, like http://digwp.com/post-name. Replacing the dynamic
query-string URL format with pretty permalinks is a great way to optimize your site
for the search engines. In this section, we examine some best practices and tips for
crafting the perfect set of permalinks.

8.3.2 Default URLs vs. “Pretty” Permalinks
An important factor to consider when optimizing your WordPress-powered site
involves configuring your URL permalinks. When optimizing WordPress for the
search engines, the first thing you want to do is set up permalinks for your site.
Here is the general structure of default WordPress URLs:

http://domain.tld/index.php?p=123

After a fresh install of WordPress, all of your site’s URLs are represented in this
“dynamic” query-string format. Every WordPress Page and Post is represented by
a sequential series of IDs. Even the URLs for feeds, category archives, tag archives,
and date archives are displayed in this dynamic format. But there are numerous
reasons why this format is not the best choice for your site’s URLs. Default URLs are
not very user-friendly and they do not take advantage of the value that Google
and other search engines place on URL keywords.

Fortunately, WordPress provides a built-in solution in the form of automatically
generated permalinks. Once enabled, permalinks – also referred to as “pretty”
permalinks – transform WordPress’ default URLs into a wide variety of formats,
depending on your configurational preferences (see Chapter 2.3.1). Here are
some examples:

More on Permalinks

To refresh your memory and
learn more about setting
up permalinks, flip back to
Chapter 2.3.1.

Permalink Optimization

Additional information
on optimizing permalinks
and URLs can be found at
DigWP.com and CSS-Tricks:

http://digwp.com/u/499
http://digwp.com/u/500

http://digwp.com/u/499
http://digwp.com/u/500

303

http://domain.tld/name-of-post/

http://domain.tld/name-of-page/

http://domain.tld/category/boots/

http://domain.tld/author/fonzi/

http://domain.tld/2008/08/08/

See? No ugly query-string
parameter confusing the issue – just
straightforward, keyword-rich, “static”
URLs. With permalinks enabled, your
posts and page URLs may include
the perfect blend of keywords while
retaining their user-friendliness and
readability.

8.3.3 Keep Permalinks Short
After deciding to use permalinks on your site, it is
important to consider the best-possible format. In the
WordPress Admin, under “Settings > Permalinks”, you
will find several permalink configuration options, as
well as a place to specify any custom structure you wish
(see screenshot at right).

The general rule of thumb for establishing an
optimal permalink structure is to keep your URLs
as short as possible. This reasoning is based on
research that suggests that URLs based upon
“flat” directory structures fare better in the search
results than do those with deeply nested, overly-
convoluted architecture.

Even “Static” Pages are
Dynamically Generated
Posts and Pages are treated differently in WordPress. Posts are considered
to be part of a timeline that flows in chronological order, whereas Pages
contain content that is removed from the normal flow of posts. Perhaps
because of this difference, there is a common misconception that somehow
Pages are not dynamically generated from the database. But this couldn’t
be further from the truth. In fact, both Posts and Pages are stored in the
database and called dynamically to the web page by PHP and the Post or
Page template (which may also contain content). You can create static web
pages and then link to them like any other document, but Pages created via
WordPress store their content in the database.

304

Although there are free WordPress plugins available for changing
your permalinks, we prefer to handle URL redirection with Apache/
HTAccess rather than PHP because it requires fewer system
resources and is executed with greater speed. One final note
before we begin: the purpose of this tutorial involves removing
date information from all future permalinks and redirecting all
pre-existing permalinks to their restructured counterparts. Thus,
if you are setting up permalinks for a new blog (or one with only
a few posts), the second part of this tutorial may not be required
– a simple change of permalink structure via the WP Admin (as
explained below) may be all that is needed.

Part 1: Update WordPress Options
The first step in creating “post-name-only” permalinks is to update
your WordPress permalink structure in the Permalinks Options
page of the WordPress Admin. Using the Custom structure option,
customize your permalink structure as follows:

/%postname%/

After entering the post-name-only permalink structure, save the
changes and test your pages. Remember to check different types
of views – home, single, archive, page, search, etc. – to ensure that
your new permalinks are working as expected. Once this is done,
all future posts will feature the dateless permalink structure. In the
second part of our tutorial, we will redirect all requests for existing
versions of your URLs to their newly configured counterparts.

Part 2: Update .htaccess file
The second step in creating “post-name-only” permalinks involves
modifying your root or subdirectory htaccess file to ensure that old
permalinks are redirected to, and served as, your new permalinks.
Examine each of the scenarios described below, determine which
method applies to your specific setup, and implement the
required steps.

Option 1: Remove “year/month/day”
This method removes the “year/month/day” portion of permalinks
for blogs located within the domain's root directory. So, for
example, if your old permalinks looked like this:

http://domain.tld/2008/08/08/post-title/

…then the code in this section will transform them into this:

http://domain.tld/post-title/

Locate your blog’s permalink htaccess rules. Then, place the
following code directly after the line containing the RewriteBase
directive:

remove year-month-day from permalinks
RewriteRule ^([0-9]{4})/([0-9]{1,2})/([0-9]{1,2})/([^/]+)/?$
http://domain.tld/$4/ [R=301,L]

Option 2: Remove “year/month”
This method removes the “year/month” portion of permalinks for
blogs located within the domain's root directory. So, for example, if
your old permalinks looked like this:

http://domain.tld/2008/08/post-title/

…then the code in this section will transform them into this:

http://domain.tld/post-title/

Locate your blog’s permalink htaccess rules. Then, place the
following code directly after the line containing the RewriteBase
directive:

remove year and month from permalinks
RewriteRule ^([0-9]{4})/([0-9]{1,2})/([^/]+)/?$ http://domain.
tld/$3/ [R=301,L]

For either of these methods, remember to edit the “domain.tld” to
match that of your own. No other changes are necessary. Test like
crazy. After verifying that everything works as intended, sit back
and enjoy your new optimized permalinks.

Switching from Date-Based Permalinks to Post-Name-Only

305

Here is a visual comparison of a flat directory-structure vs. a deeply nested
directory structure:

Flat directory structure

Deeply nested directory structure

Thus, when it comes to your permalinks, the idea is similar: the shorter, the better.
Thus, unless you have good reason for choosing otherwise, your permalinks should
look more like this:

http://domain.tld/my-super-awesome-post/

…and less like this:

http://domain.tld/2008/08/08/my-
super-awesome-post/

With this strategy in place, your URLs
will feature a more concentrated mix
of keywords while staying as “no-
nonsense” and user-friendly
as possible.

It's OK to Change the Title of
Posts and Pages
Once you publish a post, the permalink or URL of that web page is set. You
don't want to change it, and if you do, you should ensure that a proper
redirect is in place. One thing that you definitely can change after you
publish a Post or Page is the title. Many people mistakenly assume that
the URL and the title are somehow interconnected and therefore can’t be
changed without screwing everything up. So, for the record, the title and
URL of your pages are treated separately. That is why there are two different
fields for these values: one for the title and one for the page “slug” (which
serves as the permalink). So go ahead and feel free to change your post title
anytime you like – it’s totally fine.

306

8.3.4 Maximize Permalink Keywords
One of the best reasons to switch to permalinks involves
the ability to incorporate keywords into your URLs.
Keywords make the Web go ‘round, and it is especially
important to optimize your URLs accordingly. To
illustrate the point, consider the difference between the
following two URLs:

http://yoursite.com/index.php?p=123

http://yoursite.com/search-engine-optimization/

All else being equal, which URL do you suppose
communicates more effectively the content of the
page? Of course, the second URL structure, which
utilizes WordPress’ permalink format and contains
three keywords that search engines may use to help
determine the meaning and purpose of the page.
Permalinks enable you to take advantage of keyword-
rich URLs that contribute to the overall SEO quality of
your site.

As you write and publish your posts and pages, keep
the keywords of your URLs in mind. An extremely useful feature of the WordPress
Write/Edit screen is the ability to quickly edit permalinks. Beneath the post title
there is a line that shows the current permalink for the post. To edit this, simply
click on the “Edit” button to the right and change the permalink as needed.

Finding Duplicate
Content
How much duplicate content has Google found on
your site? The easiest way to find out is to spend some
time searching around in Google. For example, do a
“site:yoursite.com” search and examine the results.

First of all, how many results are returned? Compare
that number with the total number of unique pages
that you have. Is there a discrepancy?

Secondly, skip around the results and look for similar
pages. Jump to the 10th results page and have a look.
Then jump ahead five more pages and take a look. Do
you see many similar titles and/or descriptions?

Lastly, check for duplicate content resulting from
similar query strings by searching for “site:yoursite.
com inurl:yourquerystring”. Again, examine the results.
Watch for duplicate titles and similar titles with the
same query string.

307

This feature enables you to customize your permalinks to be as terse and keyword-
rich as possible. Here are some tips for optimizing your permalinks:

• The shorter the better

• Eliminate extraneous words (a, the, as, if, while, etc.)

• Include targeted keywords that correspond to the title and content of your post

When used wisely, these tips will ensure that your permalink URLs are configured
for maximum results with both users and the search engines.

8.4.1 Scoring with Google
In addition to the SEO techniques discussed thus far, there are many other excellent
ways to ensure a more optimized site. In this section, we will examine some of
these ideas and explain how they may benefit WordPress users.

8.4.2 Content, Content, Content
As you go about optimizing your site for the search engines, keep in mind that
the most important part of your site is the content. Make sure each page provides
maximum value with the optimal amount of content. Also, when designing your
theme, ensure that the content is placed as close to the top of the page as possible.
Avoid placing tons of fancy scripts or other code before your content. If your
theme design features a sidebar, ensure that it appears after your content in the
source code.

A good way to view this strategy is to imagine what a search-engine spider such as
the Googlebot sees when it crawls your pages. Looking at your source code, how
much data must be crawled before actual content and keywords are encountered?
Also, it has been reported that keeping the ratio of content to code as high as
possible bestows additional SEO benefits. Food for thought!

Spider's-Eye View

A great way to evaluate how
the search engines are “seeing”
your web pages is to use an
online SEO tool such as the
Spider Test at seobook.com:

http://digwp.com/u/224

Simply enter your URL and
the Spider Test will show
you how your page looks to
the search engines. Definitely
helpful.

http://digwp.com/u/224

308

8.4.3 Detecting Duplicate Content
As discussed, duplicate content is a bad thing. Fortunately, there are many tools
and techniques available for dealing with it. In addition to the previously discussed
tactics (use of meta tags, nofollow attributes, robots directives, canonical tags,
and excerpts), you can use an online duplicate-content checker, such as the one
at Virante.com http://digwp.com/u/225, to test your site for many possible sources of
duplicate content. For example, a recent check of this book’s companion website,
digwp.com, returned the following results when analyzed for duplicate content:

• WWW/NonWWW Header Check: FAILED
Your site is not returning a 301 redirect from www to non-www or vice versa.
This means that Google may cache both versions of your site, causing sitewide
duplicate content penalties.

• Google Cache Check: FAILED
Google may have duplicate copies of pages on your site due to indexing both
the www and non-www version of your site shows 207 pages cached, while the
www version shows only 0 cached. Unless your site has subdomains, this often
means that some duplicate content penalty may exist.

• Similarity Check: SUCCESS
You do not appear to have any pages omitted for being too similar in the top
1000 results of your site in Google.

• Default Page Check: FAILED
You have not standardized your default pages meaning the following versions
of your url return a 200/OK Header, which may cause duplicate content issues.
The following extensions work:

http://digwp.com/index.html
http://digwp.com/index.htm
http://digwp.com/index.asp
http://digwp.com/index.aspx
http://digwp.com/default.asp
http://digwp.com/index.php
http://digwp.com/

www vs. no www

An easy way to ensure proper
redirection of your www
URLs to their non-www
versions is to add a quick slice
of code to your root
.htaccess file:

RewriteEngine On
RewriteBase /
RewriteCond %{HTTP_HOST}
!^domain\.tld$ [NC]
RewriteRule ^(.*)$ http://
domain.tld/$1 [R=301,L]

Simply change the two
“domain.tld” parts to match
your domain and you're all set.

For more information, or to
redirect from non-www to
www, check out
Perishable Press:

http://digwp.com/u/226

Complete Canonicalization for WordPress

As you can see here, there is much more to
canonicalization than simple meta tags and default
WordPress settings. Although this topic is beyond the
scope of this book, you can learn more and set up
complete WordPress canonicalization by visiting this post
at Perishable Press: http://digwp.com/u/227

http://digwp.com/u/225
http://digwp.com
http://digwp.com/u/226
http://digwp.com/u/227

309

• 404 Check: FAILED
You are not returning a 404 error on non-existent pages. This means Google
could cache a large number of useless, duplicate pages on your site. Example:
http://digwp.com/afgahsdfjkahsdfjkasdhfjaksdhfasdjf.html

• PageRank Dispersion Check: SUCCESS
You do not have a different pageranks [sic] for the non-www and www version
of your domains.

As you can see, the information provided in such reports is extremely valuable. Rest
assured, we will be correcting these issues just as soon as we finish the book!

8.4.4 Optimizing Heading Elements
Another important consideration involves the optimization of your pages’ heading
elements. Heading elements are used in page markup to denote the various
headings on the page, and range in value from <h1> to <h6>. For example, a
common markup scenario involves using <h1> elements for your site name, <h2>
elements for each post title, <h3> elements for each sidebar section, and so on.

The problem with this strategy, at least from an SEO-perspective, is that search
engines are reported to place slightly greater value on <h1> elements than the
others. Thus, it is argued that, in order to better rank your individual Post Pages,
you should forego the use of <h1> for your site’s name and instead use it for your
post titles. Likewise, subtitles should use <h2> tags, while the site name should be
displayed via simple paragraph elements (<p>).

Yet, as with nofollow attributes, there are two sides to this issue. While using <h1>
tags for post titles instead of the site name may provide an extra nudge from the
search engines, it is not altogether semantically correct to do so. Without getting
into a lengthy discussion about semantic markup, suffice it to say that “properly”
marked-up Web documents are frequently thought of as displaying the name of
the site via <h1> elements, with all subsequent sections following from there. Of
course, this topic is hotly debated around the Web, but we thought it important
enough to mention here.

310

Personally, I have been known to use <h1> elements for both the site name
and post titles. And regardless, with the advent of HTML 5, documents will be
empowered to include multiple heading elements of any type throughout
the page.

8.4.5 Optimizing Title Tags
In a similar vein to heading elements, title tags are another area for potential SEO
improvements. Title tags are declared via <title> elements in the <head> section of
your WordPress pages and are displayed in search results, bookmarks, and in the
title bar of browsers. Generally, but not necessarily, the title information included
in the <head> section conveys the same information used for the Post or Page title.

In the current version of WordPress, titles are displayed using the wp_title()
template tag. By default, the wp_title() tag displays the following information,
depending on page type:

They can be Different

In WordPress, the title of each
post can be different on the web
page and in the search results.
Using a plugin such as All-in-
One SEO or Headspace2, you
can easily specify a custom title
for the <title> tag.

Three different uses for the title
tag (from top): search-engine
results, browser title bar, and
source code. Of course, the title
of the post may be different.

311

• For the “Home” page — wp_title() displays no output

• For individual pages — wp_title() displays the page title

• For single post views — wp_title() displays the post title

• For archived post views — wp_title() displays no output

• For date-based archives — wp_title() displays the year and/or month

• For category archives — wp_title() displays the category title

• For author archives — wp_title() displays the user’s public username

• For 404 error pages — wp_title() displays no output

• For search results — wp_title() displays no output

• For tag archives — wp_title() displays the tag name

Very basic stuff, however, you can always beef things up by adding your site name
or tagline like this:

<title>

 <?php wp_title('»','true','right'); ?><?php bloginfo('name'); ?>

</title>

Which will output the default page title followed by the name of your blog or site:

Title of Displayed Page » Blog Name

This simple implementation of the wp_title() tag will ensure that your site name
is associated with all of your content. Even better, it will take care of those pages
where no output is returned by displaying your site name.

Way back in Chapter 3.3.4, we showed you how to create far-nicer page titles.
While back then we were concerned about users, usability, and aesthetics, those
same exact concepts are also important for SEO. Please refer to that section for the
code necessary to create excellent and search-engine friendly title tags.

312

8.4.6 The nofollow Wars
Several years ago, Google initiated the widespread implementation of nofollow
attributes for distrusted content, paid links, and crawl prioritization http://
digwp.com/u/243. Despite Google’s best efforts to gain full compliance with their
recommendations, many people felt like it was a bad idea that would ultimately
exacerbate the very problems it was designed to solve http://digwp.com/u/244. Further,
on a more personal front, many bloggers felt that denying commentators their
just rewards for leaving a comment simply wasn’t fair. Since that time, there has
been a growing movement of “dofollow” bloggers who defy Google by removing
nofollow attributes included by default on WordPress sites.

By default, all links related to WordPress comments – namely, author and intra-
comment links – are generated with nofollow attributes included. While there are
many ways to remove them (see Chapter 7.7.3), and thus jump on the dofollow
bandwagon, you may want to consider the possible ramifications of doing so. First,
many well-ranked WordPress sites that feature these so-called dofollow comment
links are included on spam and other types of dofollow lists across the Web.
Further, it has been reported that Google actually penalizes sites for not adhering
to their recommended nofollow guidelines http://digwp.com/u/417. Even so, many
ultra-hip and user-minded individuals continue to face perpetual spam comments,
loss of page rank, and potential penalties while supporting the dofollow cause.

As discussed in Chapter 7.7.3, we now know that using nofollow to conserve page
rank is no longer an effective tactic. Thanks to changes in the way Google treats
nofollow links, any link equity that would have been conserved due to nofollow
links will now simply vanish into nothingness. Yet even with this new information,
nofollow is still a useful tool for managing duplicate content, keeping certain
pages out of the index, and protecting your site against comment links pointing to
questionable sites.

WordPress + nofollow

For a ton of excellent tips
and techniques for removing,
editing, and customizing your
WordPress nofollow links,
check out this series of posts:

http://digwp.com/u/245

http://digwp.com/u/243
http://digwp.com/u/243
http://digwp.com/u/244
http://digwp.com/u/417
http://digwp.com/u/245

313

8.4.7 Fixing Broken Links
Any seasoned webmaster or blogger knows how quickly
the Web changes. Dead links appear all the time, and
can really decrease the inherent and perceived value of
your site. If visitors and search engines are constantly
running into dead links, what message are they receiving
about the accuracy, currency, and relevancy of your site?
Whether inbound or outbound, links need to be kept
current and healthy in order to ensure the best possible
presentation of your site.

When it comes to checking for dead or broken links on
your site, there are a few good strategies. The most time-
consuming and difficult involves keeping track of things
manually. This may work for sites with small amounts of
content, but for anything larger, you are going to want
to automate the process as much as possible. There are
online services such as the one provided by the W3C
http://digwp.com/u/246, which checks single web pages, or,
even better, services such as the one provided by dead-
links.com http://digwp.com/u/247, which scans your entire
site and reports back with complete results. Of course,
there are many, many other free and paid link-checking
services available on the Web, just consult your nearest
search engine!

Alternately, you may wish to install a plugin to keep track of broken and changing
links. If so, the Broken Link Checker plugin by Janis Elsts http://digwp.com/u/248 may
be just the ticket. After installing, the Broken Link Checker plugin will monitor your
blog for broken links and provide a full report in the WordPress Admin. The plugin
runs automatically in the background while you are logged in to the WordPress
Admin. The plugin is highly configurable and definitely worth a look.

Finally, if none of the above options are for you, or if you want additional link-

Patience, Young Jedi

Checking your entire site for
links at a link-checking service
such as dead-links.com can
take awhile, but the results are
usually worthwhile.

http://digwp.com/u/246
http://digwp.com/u/247
http://digwp.com/u/248

314

checking capabilities, there are a couple of other excellent options available. If
you are a Firefox user, you can install the free LinkChecker add-on by Kevin Freitas
http://digwp.com/u/249. Once installed and enabled, Kevin’s LinkChecker will check the
validity of links on any page with a single click.

For offline link-checking analysis, check out Xenu’s Link Sleuth http://digwp.com/u/250,
which is a powerful piece of software that checks sites for broken links from your
local machine. Xenu’s Link Sleuth is reported to be a bit more robust in terms of
the types of links that can be checked, including “normal” links, images, frames,
plugins, backgrounds, local image maps, style sheets, scripts, and even Java
applets. The program provides continuous, detailed reports and features plenty of
awesome configurational options.

8.4.8 Using a Sitemap
Perhaps the easiest way to increase the SEO-value of your
site is to create a sitemap. Sitemaps provide a structural
overview or map of your entire site in XML (eXtensible
Markup Language) format. Sitemaps help search engines
navigate your site and find new and updated content.
Many WordPress sites take advantage of Arne Brachhold’s
free plugin, Google XML Sitemaps http://digwp.com/u/251.
Once installed and configured, the XML Sitemaps plugin
works quietly behind the scenes to maintain a current
sitemap for your site. The plugin is highly configurable,
and includes options to ping various search engines after
each update to your sitemap. The main benefit to using
a sitemap plugin is that you won’t have to keep manually
recreating your sitemap – it’s all automatic!

For sitemaps without a plugin, there are a good number
of free online services available. For example, XML-
Sitemaps.com http://digwp.com/u/252 provides a free service
whereby you enter the URL for your site, grab a snack,

http://digwp.com/u/249
http://digwp.com/u/250
http://digwp.com/u/251
http://digwp.com/u/252

315

and download your sitemap. There is a 500-page limit for the online generator, but
the site also provides an unrestricted standalone generator for a nominal fee. Keep
in mind, however, that online sitemap services require that you re-generate your
sitemap every time you update your site – it is not an automated
process. Especially if your site is updated frequently, this could be
a serious drag.

8.4.9 Other SEO tips
While there may be no end to the optimization techniques available to you, there
are a few more general SEO strategies that we should mention here. These tips are
old hat to the search-engine veterans out there, but they serve as good reminders
and will help newcomers forge a better overall SEO plan.

Perhaps the most important – and challenging – part of your SEO strategy involves
obtaining high-quality and relevant links to your site. Most of what we read about
SEO these days involves information and techniques for obtaining links from other
sites. And there is good reason for this, without links, your site is pretty much
invisible to search engines. If you think of the Web as consisting of many streams
of traffic flowing to different sites, it makes sense that those sites with the largest
streams flowing into them are the most popular, highly visited sites on the Web.
Thus, pursuing plenty of high-quality, relevant links is vital to any SEO strategy.

The trick, of course, is actually getting links. While we don’t have room in this
book to discuss the dynamic realm of link-building, we can point you in the right
direction. Here are some of the Web’s top SEO sites, which continually focus on the
important topic of obtaining links:

• SEOmoz - http://digwp.com/u/255

• SEOBook - http://digwp.com/u/254

• Search Engine Land - http://digwp.com/u/253

Another effective SEO strategy, as mentioned earlier in this chapter in section
8.3.1, involves optimizing your permalinks to keep them as accurate and concise

Short URLs

With the rise of Twitter
and other micro-blogging
media sites, the importance
of providing short URLs to
your visitors can mean the
difference between getting your
content shared around the
Web or having it just sit there.
For some great techniques on
providing short URLs (for
Twitter and other social media
sites) check out the popout
in Chapter 2.3.2 and the
following post at Perishable
Press:

http://digwp.com/u/256

http://digwp.com/u/255
http://digwp.com/u/254
http://digwp.com/u/253
http://digwp.com/u/256

316

as possible. In general, the shorter the URL, the better, at least from an SEO-
perspective. Shorter URLs represent “flatter” directory structures, which have been
reported to facilitate the spidering process and thus promote increased availability
of your content to the search engine. Likewise for any non-permalink resources you
may provide on your site, avoid nesting too deeply within your directory.

Another useful SEO strategy to consider involves maximizing the meta information
associated with your links, images, and other resources. When writing the markup
for these key types of content, include the recommended alt, title, and desc
attributes, and give them useful, descriptive, and keyword-rich values. Doing
so fortifies the inherent value of these items, thereby fostering findability and
relevance via the search engines. Integrating good meta information as you build
your WordPress site is a beneficial habit to develop early in the game.

Last but not least, the performance of your site has an enormous impact on the
quantity and quality of traffic that it receives. Slow-loading pages, broken links,
and missing images, for example, are serious red flags to both human users and
the search engines. In Chapter 9, we provide excellent strategies for optimizing
the performance of your WordPress site, enabling you to deliver your content as
quickly and accurately as possible.

Finally, beyond these SEO techniques, it is also important to test your site on
numerous platforms and browsers and ensure that your images, links, and other
resources remain continually available according to the information on your site.
Make sure that your visitors always have access to your stuff!

317

8.4.10 SEO-Related plugins
One of the main benefits of using WordPress is its extensibility. The WordPress
developer community is one of the greatest in the world, endlessly producing
useful plugins, thematic functions, workarounds and hacks. Basically, with
WordPress, you can do virtually anything. And the realm of SEO is no exception.
Here is a list of some of the most useful and beneficial SEO plugins currently
available to the thriving WordPress community:

• All-in-One SEO - http://digwp.com/u/257
“Optimizes your Wordpress blog for Search Engines” by enabling canonical
URLs, navigational links, extended plugin functionality, integration with
e-commerce sites, nonce security, custom meta tags, and tons more. Perhaps the
most widely used SEO plugin for WordPress.

• HeadSpace2 SEO - http://digwp.com/u/258
“All-in-one metadata manager that allows you to fine-tune the SEO potential
of your site.“ You can configure metadata for posts, pages, categories, and just
about everything else. You can define tags, descriptions, titles, “more” text, as
well as custom themes, plugins, scripts, CSS and much more.

• Redirection - http://digwp.com/u/259
Manages 301 redirections, keeps track of 404 errors, and cleans up any loose
ends your site may have. Perfect for migrating pages from old sites or changing
the directory of your WordPress installation.

• Robots Meta - http://digwp.com/u/260
Enables you to specify which pages may be crawled and indexed by search
engines. By customizing your pages’ meta tags, you have full control over
virtually every type of page on your site – all from within the comfort of the
WordPress Admin.

• SEO Smart Links - http://digwp.com/u/261
Helps you create a more robust internal linking structure for your site by
automatically linking any specified terms with relevant pages, posts, tags, or
anything else. Includes options for nofollow links and “blank” targets (where
linked pages open in a new tab or window).

http://digwp.com/u/257
http://digwp.com/u/258
http://digwp.com/u/259
http://digwp.com/u/260
http://digwp.com/u/261

318

These plugins will enable you to devise and implement the optimal SEO strategy
for your WordPress-powered site. But the list doesn’t stop here! Check out the
official WordPress plugin repository http://digwp.com/u/262 for a more comprehensive
list. And, if you don’t find what you are looking for there, be sure to search the
Web for anything you may need – there is tons of great stuff out there, and not all
of it is listed in the WordPress Codex. ;)

8.5.1 Tracking the Success of Your Site
As you optimize your site for the search engines, you will inevitably want to
monitor and track its statistical progress. Fortunately, there are many analytical
and statistical tools from which to choose. Here is an overview of some of the most
popular statistical plugins and techniques.

8.5.2 Statistical Plugins
• WP-ShortStat - http://digwp.com/u/263
The WP-ShortStat plugin provides
essential site statistics for your
WordPress-powered site, including
visits, hits, referrers, search terms, and
more. WP-ShortStat is a lightweight
stats plugin that is easy to install,
configure and use. It simply runs
quietly in the background, gathering
statistics and reporting the results in
a convenient page in the WordPress
Admin. And best of all, it’s free.

• StatPress - http://digwp.com/u/266
StatPress is a multi-language stats
plugin that collects information about

Controlling the Size of Your WP-
ShortStat Database Table
Using the excellent WP-ShortStat plugin can quickly bloat the size of your
WordPress database. It collects a lot of data on many types of statistics. Over
time, or more quickly for busier sites, the size of WP-ShortStat table can
add many megabytes of data to your database. To help control this, you can
routinely execute the following SQL command:

DELETE FROM `wp_ss_stats` ORDER BY `id` ASC LIMIT n

Simply check the total number of records in your wp_ss_stats table and
enter a value of “n” that corresponds to the number of entries you would
like to delete. Remember to backup your database beforehand, and also
change the database prefix in the SQL query from “wp_” to any custom
prefix that you might be using. For complete details, check out Perishable
Press: http://digwp.com/u/264

http://digwp.com/u/262
http://digwp.com/u/263
http://digwp.com/u/266
http://digwp.com/u/264

319

visitors, spiders, search keywords, feeds, browsers, and more. StatPress works in
“real time,” enabling you to observe which pages your users are visiting as they
navigate your site. Admin statistics page conveniently located in the WordPress
dashboard menu.

• Google Analytics Dashboard - http://digwp.com/u/267
“Google Analytics Dashboard gives you the ability to view your Google
Analytics data in your Wordpress dashboard. You can also allow other users to
see the same dashboard information when they are logged in or embed parts of
the data into posts or as part of your theme.”

• Analytics360 - http://digwp.com/u/268
“MailChimp’s Analytics360 plugin allows you to pull Google Analytics and
MailChimp data directly into your dashboard, so you can access robust analytics
tools without leaving WordPress.” Features include visual statistics display,
comparative growth analyses, and robust referrer information.

And these are just the tip of the iceberg. We wish we could review all of the best,
but there are simply too many of them. Need proof? Check out the vast menu of
statistical plugins available at the WordPress Codex: http://digwp.com/u/269.

Google Analytics Plugin

I often joke about how many
different plugins there are for
adding the Google Analytics
code to your site. Yet among the
clones, there is one that stands
out: Google Analytics for
WordPress not only adds the
required GA code, it also tracks
and segments all outbound
links, tracks AdSense clicks,
adds extra search engines,
tracks image search queries
and it will even work together
with Urchin. Best of all, it’s
by Joost. Check it out:

http://digwp.com/u/271

Analytics Roundup

StylizedWeb posted a much-
needed roundup of 5 Rocking
Google Analytics Plugins:

http://digwp.com/u/474

http://digwp.com/u/267
http://digwp.com/u/268
http://digwp.com/u/269
http://digwp.com/u/271
http://digwp.com/u/474

320

8.5.3 Shaun Inman’s Mint Stats
Shaun Inman’s Mint is a beautiful, user-
friendly, and extensible statistical application
that you install on your domain. It provides
complete control over your site’s statistics.
Out of the box, Mint keeps track of all the
essentials: hits, visits, referrers, and much
more. Beyond its default functionality, Mint
is extensible through a large variety of
extensions, called “peppers.” A great amount
of statistical functionality is available through
both free and paid peppers, including cool
things like monitoring visitors’ traversal of
your site, determining visitors’ geographical
location, and integration of third-party services like Twitter, Vimeo, and more. Mint
is available at http://digwp.com/u/270 for around $30. Highly recommended.

8.5.4 Google Analytics
One of the most popular statistical applications available today is Google Analytics
(GA). Google Analytics tracks a mind-boggling amount of data for as many
websites as you can throw at it. The service requires a Google account and the
placement of a small snippet of code into the footer of your site’s pages:

<script type="text/javascript">
var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www.");
document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js'
type='text/javascript'%3E%3C/script%3E"));
</script>
<script type="text/javascript">
try {
var pageTracker = _gat._getTracker("UA-xxxxxx-x");
pageTracker._trackPageview();
} catch(err) {}
</script>

GA Fail?

As great as it is, one of the
downsides of Google Analytics
is that it requires JavaScript
to work. This basically means
that GA can't collect data
from visitors who are not
JavaScript-enabled. While this
sucks, one thing that you can
do is track how many users are
visiting without JavaScript.
Check out this plugin by
Remy Sharp:

http://digwp.com/u/272

http://digwp.com/u/270
http://digwp.com/u/272

321

Once in place in your footer.php file, this GA tracking code will enable Google
to track and monitor your site’s statistics. After an initial data-collecting period
(usually a day or so), statistical results may be checked via the GA area of your
Google account. Once logged in, you will find a plethora of statistics for your site.
One downside is that real-time monitoring of visitors throughout your site (as with
Mint or StatPress) is not possible with GA; however, on the upside, the service is
quite reliable, comprehensive, and free of charge.

8.5.5 Other Metrics
Other ways to measure the statistical metrics of your site include services such as
Technorati, Alexa, and FeedBurner. Let’s have a look at each one.

Technorati - http://digwp.com/u/273

Technorati is a free blog networking service that enables users to favorite your
blog and share it with other people in their network. In providing this service,
Technorati provides very general, broad statistics concerning your blog’s reach and
influence. After registering and “claiming” (verifying) your blog, Technorati begins
to measure its success according to the Technorati ranking system, which most
likely includes factors related to how people share and favorite your content.

Alexa - http://digwp.com/u/274

An Amazon.com company, Alexa uses its user-installed toolbar to gather statistical
data on various metrics of internet-browsing behavior. Statistical data is collected
from Alexa toolbars and transmitted back to the Alexa website. This data is then
stored, analyzed, and reported at the company’s website. The amount of statistical
data that Alexa provides is impressive, but there is concern over the bias of its opt-
in, self-collecting method of gathering data.

FeedBurner - http://digwp.com/u/275

As discussed in Chapter 6.4.1, FeedBurner is a feed delivery service that measures

SEO Common Sense

You don’t need to break your
back (or your wallet) trying to
get good SEO advice for your
site. The Common Sense SEO
Checklist breaks it all down
and delivers a clear, practical
guide to optimizing your sites:

http://digwp.com/u/276

http://digwp.com/u/273
http://digwp.com/u/274
http://digwp.com/u/275
http://digwp.com/u/276

322

many different statistical aspects of your feeds. While there are currently several
viable alternatives for monitoring your feed statistics, FeedBurner continues to
provide quality statistical data to millions of users around the Web. The service is
free, requiring only account registration and proper configuration.

8.6.1 Closing Thoughts on SEO
Despite all of these techniques to control the indexing and ranking of your
WordPress pages, there are several “purists” out there who will argue against any
SEO-related changes whatsoever. Their argument is that Google and the other
major search engines are smart enough to successfully index the Web without any
outside intervention. While this may be the case, we feel that an understanding
of the different SEO methods at your disposal will enable you to devise and
implement any SEO strategy that you see fit.

The SEO techniques presented in this chapter are widely used by SEO gurus and
webmasters across the web, and have proven effective, reliable and safe when
applied intelligently. Of course, a complete guide to Search Engine Optimization
is well-beyond the scope of this book, however, by using the methods presented
in this chapter, you will have greatly improved the SEO-strength of your site and
hopefully learned the skills needed to further strengthen your pages according to
your own personal strategy. As you develop your SEO strategy, it’s good to keep
the following things in mind:

• There are many different SEO theories, techniques, and ideals

• There is no “one-size-fits-all” recipe for SEO success

• Do your own research (or hire someone reliable to do it for you)

• Optimizing your site does not happen overnight (unless you go black-hat)

• Common sense will serve you well

• “Content is king” is your new mantra

323

When it comes to web-design-related topics, Search Engine Optimization is one
of the most competitive, controversial, and contemplated fields that you will
ever have the pleasure of experiencing. Money makes the world go ‘round, as
they say, and the same is true for the Internet. To make money on the Web, many
businesses rely on SEO firms and “experts” to get their sites ranking high and
flowing with traffic. As you can imagine, there is fierce competition within the SEO
discipline. Everyone claims to be an “expert,” and there is a ton of misleading and
false information being churned out every minute of the day. The theories, ideas,
and strategies used by one SEO expert may be entirely different than those used
by the next. Everyone has their own SEO theory, and you will be no exception.
Fortunately, there are many aspects of SEO that are widely agreed upon as being
useful and effective, and we have tried to stay within those lines while writing
this chapter.

With this in mind, we encourage you to use the information in this chapter to
help formulate your own SEO strategy. There is no “one-size-fits-all” approach to
optimizing your site for the Web, so do your own thinking and research the topic
as thoroughly as possible. As you continue developing your SEO skills, your ideas
and strategies will evolve and improve. Despite what you may hear, learning the
fine art of SEO doesn’t happen overnight, so begin with the basics and use them
as a foundation on which to grow and develop your own optimization techniques.
If nothing else, remember that “content is king,” linking to other sites is a good
thing, and a little common sense goes a long way to making the right decisions.

Into the future…
Now that we have seen some of the many ways to optimize our WordPress-
powered sites for the search engines, it’s time to prepare for the inevitable
onslaught of traffic that will be heading our way. To ensure that everyone enjoys
the best possible experience at your site, it is important that everything is in tip-top
shape. In the next and final chapter of the book, we dig into the essential practice
of optimizing your site’s performance and maintaining a healthy site far into
the future.

324

The best design tool is a long eraser with

a pencil at one end.

– M A R T Y N E U M E I E R

Maintaining a Healthy Site

9.1.1 Keeping a Site Healthy
As easy as WordPress makes it to set up and operate blogs, e-commerce sites,
and advanced content-management systems, there is still a significant amount of
work that needs to be done in order to establish and maintain a healthy, thriving
website. In this chapter, we explore some of the many ways that we can keep our
WordPress installations running optimally, effectively, and securely.

9.1.2 Securing WordPress
For any website, a strong security strategy is an absolute necessity. As the world’s
most popular blogging software, WordPress is a huge target for malicious attacks.
Fortunately, the popularity of WordPress is also its greatest strength, as thousands
of top-notch developers continually release and upgrade a mind-boggling number
of useful plugins, themes, functions, and techniques. When combined with key
methodology and other information, these tools equip us to secure WordPress and
defend thoroughly against malicious activity, spam, and other threats.

One of the first things you should do when securing your WordPress site
involves ensuring that your files are well-protected. There are numerous ways
of accomplishing this, including configuring proper file permissions, disabling
directory views, locking down sensitive files, and staying current with new versions
of WordPress. Let’s examine and expound upon each of these strategies in
greater depth.

9

325

326

9.1.3 Setting Secure File Permissions
Although it is likely that your web host has already configured the optimal
permission settings or access rights for your directories and files, it is a good idea to
examine each of them to ensure proper security. There are several ways to do so,
including checking permissions directly on the server through internal file listings,
or else by using a good FTP client to connect and check remotely. Many hosting
accounts these days provide directory listings that visibly display the specific
permission level for each folder and file within the file system. Here is an example
showing Plesk’s default directory listing:

Server administration tools like cPanel will be similar. Each file’s permission setting
determines the way in which the file is allowed to be used. On Unix-ish systems,
there are three specific permissions settings:

• Read - grants the ability to read directories’ file contents and file names

• Write - grants the ability to modify file or directory names and content

• Execute - grants the ability to execute or process the contents of files and
traverse the files within a directory

327

On your server, your WordPress files should be owned by your user account and
writable by your username. In general, the proper file permissions are already in
place for self-installed versions of WordPress. Most of the time, you will not need
to concern yourself with file permissions. Exceptions include situations where you
are troubleshooting permission errors, configuring files or directories involved with
plugins, or ensuring settings for security purposes. In other words, unless there is a
clear and specific need to modify your file permissions, you probably do not need
to do so. Even so, when it comes to the security of your site, it is good to make sure
that proper permissions settings are in place. Here are a few things to remember:

Core WordPress files and directories

All core WordPress files should be writable only by your server user account. The
default permissions settings for all WordPress files is 0644. The default permissions
settings for all WordPress directories (the folders themselves) is 0755. These settings
ensure that the core is writable only by the user account and readable by the web
server and everyone else. For more information, see the Codex http://digwp.com/u/308.

Root HTAccess file

The WordPress Codex suggests setting looser permissions for your HTAccess file in
order to make it writable by WordPress. The purpose for this involves WordPress’
automatic creation of permalink rules, making it easy for users. A better idea is to
leave your HTAccess permissions set at a restrictive level, and then manually add
the required permalink directives. For more info, see http://digwp.com/u/278.

Theme files

Normally, theme files should possess the same permissions as other core WordPress
files, however, if you want to use WordPress’ built-in theme editor, you may need
to set permissions to make your theme files group-writable. This may not be
necessary however, and you should test for editing functionality before
changing anything.

Check It, don’t Wreck It

Before worrying too much
about your file permissions,
consult your host and ask
about their permissions policy.
Chances are, you don’t need
to change anything, but you
should still keep an eye
on things.

http://digwp.com/u/308
http://digwp.com/u/278

328

Plugins

Although many plugins work fine with WordPress’ default file permissions, there
are some that require write access to various files and/or directories. In this case,
one of the most common requirements is that the entire wp-content directory
be made writable. If so, begin with a permission setting that is as restrictive as
possible, such as 755. If this doesn’t provide sufficient privileges on your server, then
you may need to use 777, which is not recommended due to reasons
explained below.

Directories

There are a couple of directories that also may need to be writable by WordPress.
The first is the wp-content/cache directory, which needs to be writable in order for
caching to work properly. The other is the wp-content/uploads directory, which
needs to be writable in order for users to upload their content.

For files and directories that require additional permissions, keep in mind that it
may not be necessary to use 777. Although on some servers, 777 permissions is the
only thing that works, there are many cases where a less-permissive setting will do
the job. By setting 777 permissions for files or folders, you are opening your site
up to attackers who may exploit permissive settings to upload malicious scripts,

accessing your database information, and ultimately gaining
control of your entire site. For more information on configuring
WordPress file permissions, see the “Hardening” section in the
WordPress Codex http://digwp.com/u/277.

9.1.4 Disabling Directory Views
Another way to increase the security of your WordPress installation
is to disable directory views. Many hosts disable directory views
on their servers by default, however we want to make sure. When
directory views are enabled, any directory that does not include
some sort of an index file (e.g., index.html, index.php, etc.) will

May I have
Permission?
When it comes to changing permissions
settings, it is considered best
practice to use the most restrictive
settings possible. Thus, when setting
permissions begin with the most
restrictive and work your way up until
the desired functionality is possible.

http://digwp.com/u/277

329

openly display a list of all included files, thereby exposing them to anyone on the
Internet. Here is a typical example of the wp-content folder with directory views
enabled:

Obviously, this is a huge security risk. If malicious individuals were to gain access
to your wp-config.php file, for example, they could easily access your database and
steal sensitive data, destroy your entire site, and otherwise ruin your life.

Fortunately, disabling default directory views is drop-dead easy. Simply open your
root HTAccess file or Apache configuration file and add the following
line, preferably near the top of the file (although it will work
anywhere):

Options -Indexes

Alternately, if HTAccess is not an option, you may prevent directory
listings by simply adding a blank index.html or index.php document
to each of your WordPress directories. While most versions of
WordPress include such “faux” index files by default for the “wp-
admin”, “wp-content”, and “wp-includes” directories, there are still
many subdirectories that should be protected.

After creating pseudo index files in these directories, blank pages will
then appear instead of a file listing whenever someone accesses the
directories via the Web.

Destroy My Site, Please

This may be the first thing an
attacker sees before completely
destroying your website.

330

9.1.5 Forbid Access to Sensitive Files

Protecting the wp-config.php file

In addition to disabling directory views, we also want to forbid direct, external
access to critical files within the WordPress file system. First and foremost, we want
to protect the wp-config.php file. Each installation of WordPress requires this file
in order to connect to the database, set various preferences, and accommodate
custom settings.

As you can imagine, if some nefarious intruder were to gain access to this file, your
entire site – if not the entire server – would be severely compromised. To prevent
this sort of tragedy from happening, let’s secure this file with a little HTAccess
magic. Here is one way to do it:

SECURE WP-CONFIG.PHP
<Files wp\-config\.php>
 Order Deny,Allow
 Deny from all
 Allow from 123.456.789

</Files>

Place that code into your site’s root HTAccess file or Apache configuration file
and enjoy immediate protection. This code works by denying all requests for the
specified file, wp-config.php, except for those made from your specific IP address,
which is specified in the “Allow from” directive in the fifth line. The IP address in
this line should be edited to match that of your own. Note that you may allow
access to additional IP addresses or even an entire IP range as follows:

Allow access to multiple IP addresses

SECURE WP-CONFIG.PHP
<Files wp\-config\.php>
 Order Deny,Allow

What is my IP Address?

If you don’t already know it, the easiest
way to determine your IP address is to
visit the following URL in your browser:

http://digwp.com/u/281

wp-config Tricks

For an awesome collection of
configuration tricks for your
wp-config.php file, check out
these articles at our website:

http://digwp.com/u/279
http://digwp.com/u/280

http://digwp.com/u/281
http://digwp.com/u/279
http://digwp.com/u/280

331

 Deny from all
 Allow from 123.456.789
 Allow from 456.789.123
 Allow from 789.123.456
 # additional IP addresses
</Files>

Allow access to a range of IP addresses

SECURE WP-CONFIG.PHP
<Files wp\-config\.php>
 Order Deny,Allow
 Deny from all
 Allow from 123.456.

</Files>

To allow multiple IP access, simply replicate and edit as
many “Allow from” directives as necessary. To allow a
range of IP addresses, use a partial IP address such that
any matching IPs will be allowed. Incidentally, allowing
a range of IP addresses is a good way to allow access
for a dynamic IP address.

Protecting the install.php file

Used during the WordPress installation process, the install.php file is
used to specify your blog title and email address. Once this information is
entered, WordPress displays a username and password for the admin account.
Unfortunately, during certain database-related issues, WordPress may assume
that it has not yet been installed and will load the install.php file. Although
this situation is relatively rare, it can compromise your site if not prevented.
Fortunately, there are several ways to protect your site:

HTAccess Protection
for Dynamic IPs

If you are working from a dynamically generated IP
address, you can edit the Admin-protect code to allow
for the changing number.

All you need to do is omit the last octet from the IP
address and Apache will match any IP that begins with
the existing octets.

For example, if your dynamic IP ranges from
123.456.789.1 to 123.456.789.255, this code would
account for any IP that you may have:

<FilesMatch "*.*">
 Order Deny,Allow
 Deny from all
 Allow from 123.456.789
</FilesMatch>

332

Fix #1: Just nuke it
Simply delete the wp-admin/install.php file entirely. It is not needed
after installation.

Fix #2: HTAccess to the rescue
Place the following slice of HTAccess into your site’s web-accessible root
directory to prevent access to your install.php file:

PROTECT install.php
<Files install.php>
 Order Allow,Deny
 Deny from all
 Satisfy all
</Files>

Fix #3: Replace it with something safe and useful
Replace the insecure version of the file with something secure and informative
by following these quick steps:

 1. Rename the original install.php to something like “install_DISABLED.php”
 or whatever.

 2. Create a new file named “install.php” and add the following code:

<?php // install.php replacement page
 // http://perishablepress.com/press/2009/05/05/important-security-fix-for-wordpress/ ?>
<?php header("HTTP/1.1 503 Service Temporarily Unavailable"); ?>
<?php header("Status 503 Service Temporarily Unavailable"); ?>
<?php header("Retry-After 3600"); // 60 minutes ?>
<?php mail("your@email.com", "Database Error", "There is a problem with teh database!"); ?>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xml:lang="en" xmlns="http://www.w3.org/1999/xhtml" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>Error Establishing Database Connection</title>
 </head>

333

 <body>

 <h1>Error Establishing Database Connection</h1>
 <p>We are currently experiencing database issues. Please check back shortly.</p>
 </body>
</html>

 Once uploaded to your server, this new install.php file will prevent any
malicious behavior by serving up a static web page. Now, instead of showing
the Installation Page when your database is unavailable, WordPress will display
the information shown in this screenshot:

 In addition to displaying this information to your visitors, the Installation
Replacement Page also performs the following actions:

 • Communicates a 503 (Service Temporarily
Unavailable) status code to clients and search
engines

 • Instructs clients and search engines to return
after 60 minutes (configurable in third line)

 • Sends an email informing you of the situation
so that you may take action (configurable in
fourth line)

 To use the Replacement Page, don’t forget to
specify an email address in the fourth line. You
may also change other variables, such as the
time duration, email subject, or email message
as needed.

 For complete information on protecting
WordPress’ wp-config.php file, check out the
original article at Perishable Press:
http://digwp.com/u/282.

http://digwp.com/u/282

334

Protecting the wp-admin directory

Once your wp-config.php file is secure, you should also
protect your admin files, which are all conveniently located
within the wp-admin directory. Protecting the files in this
directory secures a very critical area of your site.

The easiest way to do so, is to add the following code to
the HTAccess file located in your wp-admin directory (if the
HTAccess file does not exist, create it):

SECURE WP-ADMIN FILES
<FilesMatch "*.*">
 Order Deny,Allow
 Deny from all
 Allow from 123.456.789

</FilesMatch>

As before, edit the IP address in the “Allow from” line
to match your own. Alternately, you may use this code
instead (also placed into the wp-admin HTAccess file):

SECURE WP-ADMIN FILES
<IfModule mod_rewrite.c>
 RewriteEngine On
 RewriteCond %{REMOTE_ADDR} !^123\.456\.789
 RewriteRule ^(.*)$ - [F,L]

</IfModule>

This second method requires Apache’s mod_rewrite
module and works by denying access to any IP that is not
your own. Thus, as before, you will need to edit the IP
address accordingly. Once in place, this code will deny

Limit Login Attempts
Limit the number of times a user can try different
passwords for your site with the Login Lockdown
plugin http://digwp.com/u/7.

By setting some maximum number of login
attempts, you greatly reduce the chance that
an attacker will gain access by guessing your
password. After the max number of attempts, the
user is locked out for a specified period of time.

All settings easily controlled via Admin panel.

Remove the Login
Error Message
Another tip for improving security is prevent
WordPress from displaying the default error
message on the Login Page. Invalid login attempts
are met with a message that informs the user of
the problem with their login credentials. Thus, if
an attacker were to guess your username, the login
error would provide confirmation and enable the
attacker to focus on your password.

Fortunately, preventing the login error message
is as simple as adding the following line to your
functions.php file:

add_filter('login_errors',create_
function('$a', "return null;"));

http://digwp.com/u/7

335

access – to everyone except for you – to all files in your wp-admin
directory by returning a 403 Forbidden error message. Note that you
can choose to redirect denied requests to the URL of your choice by
replacing the last line with this:

RewriteRule ^(.*)$ http://domain.tld/ [R,L]

Simply edit the URL to whatever you wish.

Note that blocking your site’s wp-admin directory with HTAccess may
produce unintended results. Specifically, if there are scripts or plugins
that need to access your Admin area or its files, they will be prevented
from doing so if your admin is locked down. One specific example
that comes to mind is the “unsubscribe” feature of the Subscribe
to Comments plugin. When a subscriber wants to manage their
subscriptions, they need access to Admin files to do so.

Protecting the Admin Login Page

The WordPress Login Page is a frequent topic of discussion where
security is concerned. As the virtual “door” to your Admin area, it is
important to secure the page as strongly as possible. Here are some
effective strategies for doing so:

• Choose a strong password
Choosing a super-strong password is your site’s first line of defense.
Avoid simple words and phrases, and use a good mix of numbers
and upper- and lowercase letters. Additionally, with WordPress, you
may use other characters such as underscores and dashes to further
confound your password. If you need help, do a quick Google
search for “online password generators.” There are many available.

• Change your password often
Once you have chosen a strong password, use it for awhile and

The Easy Way to
Password Protect
the wp-admin
Directory
If you would rather not bother with
the HTAccess method, you may want
to try the AskApache Password
Protect plugin http://digwp.com/
u/5. This plugin will encrypt your
password, create the .htpasswd file,
and set the proper file permissions.

Another good plugin for locking
down your wp-admin directory is
WP-Adminprotection http://digwp.
com/u/6, which allows only specified
IPs access. Check it out.

Alternately, if you would rather not
bog down your site with another
plugin, you may want to check
with your web host. You may be
able to create password-protected
directories with a few clicks of the
mouse from your server control
panel. For example, most cPanel
implementations make this easy to do.

http://digwp.com/u/5
http://digwp.com/u/5
http://digwp.com/u/6
http://digwp.com/u/6

336

then change it to something new. Even if you simply
change a few characters to keep it easy to remember, it
is best to do so to ensure optimal password security.

• Block access to the Login Page
Although blocking access is an excellent way to secure
your Login Page, doing so will also prevent normal
visitors from registering with your site. The reason for
this involves the way the Login Page and the Register
Page are served from the same PHP file. The URL for
the Register page looks something like this:

 http://domain.tld/blog/wp-login.php?action=register

 …which is calling the wp-login.php file and targeting
the registration portion of it via the “action=register”
query string. Thus, we can secure our site by blocking
access to the Login Page, but in doing so, the Register
Page will also be unavailable. Even so, if you are not
allowing people to register with your site, locking
down the Login Page is a strong security measure. To
do so, add the following directives to the HTAccess file
in your wp-admin directory:

 # PROTECT WP-LOGIN.PHP
 <Files wp\-login\.php>
 Order Deny,Allow
 Deny from all
 Allow from 123.456.789.0
 </Files>

 As in previous examples, simply edit the IP address to
match your own. You may also allow additional IPs to
access your Login Page by emulating the “Allow from”
directive as many times as is necessary. Once in place,
this method will allow only the listed IP address(es) to

Emergency Password
Change
If you ever find yourself in a situation where you
can’t send or receive email but need to change the
password of your admin-level account, you can do
so easily via the database and phpMyAdmin:

1) Browse the “wp_users” table and click to edit the
account name for which you would like to change
the password.

2) In the “user_pass” field, you will see the
encrypted version of your current password, which
will look something like this: “%tH1sw0uldb3Y0ur3n
cRYP73dpa$$w0rd”. Replace this existing value with
the plain-text version of your new password (e.g.,
“n3w_pa$$w0rd”).

3) Finally, select the “MD5” option from the
dropdown box (just to the left of the text field) and
save your changes by clicking “Go!” This will tell
phpMyAdmin to encrypt your plain-text password
with the requisite MD5 hash.

Voila! It’s that easy. Keep in mind that MD5 is
designed for one-way encryption – you can use this
method to encrypt new passwords, but you will not
be able to decrypt existing passwords. It’s strictly a
one-way street.

We recently posted an article on this topic at the
Digging into WordPress website. In it, you will find
everything you need to know about changing your
password with WordPress in virtually any situation:

http://digwp.com/u/283

http://digwp.com/u/283

337

access your Login Page; everyone else will receive a 403 Forbidden error.

 If you would rather send all requests for your Login (or Register) Page to the
URL of your choice, use this method instead of the previous one (again, place
into the HTAccess file of your wp-admin directory):

 # REDIRECT LOGIN REQUESTS
 <IfModule mod_rewrite.c>
 RewriteCond %{REQUEST_URI} wp\-login\.php
 RewriteCond %{REMOTE_ADDR} !^123\.456\.789\.0
 RewriteRule ^(.*)$ http://domain.tld/ [R,L]
 </IfModule>

This code will redirect any requests that are not coming from the specified IP to
the URL specified in the RewriteRule. Thus, for this code to work properly, you
will want to edit the IP address and redirect target to suit your needs.

• Secondary password protection
Another option for securing your Login Page involves implementing
secondary password protection via basic HTTP (Hypertext Transfer Protocol)
authentication.

Adding secondary password protection is an excellent way to lock things
down without the need for listing individual IP addresses. This
is especially useful if you work through multiple or changing IP
addresses, or if there are multiple administrators, authors, or
contributors to the site.

Conceptually, the process of password-protecting your Login Page
is simple:

 • Create a text file with your desired username and password

 • Require the username and password via a local .htaccess file

In practice, implementing these two steps requires a bit of careful

338

editing, copying and pasting. First create the username
and password and place it in a text file like so:

 anakin:y5gj8dwr39jg2

Place your username on the left side of the colon (:) and
your encrypted password on the right. For the password,
try one of these free online password encryptors:

 • 4WebHelp’s encryption tool - http://digwp.com/u/284

 • Alterlinks password generator - http://digwp.com/u/285

 • htmlite’s encryption page - http://digwp.com/u/286

Finally, save the username/password string in a file called
“.htpasswd” (without the quotes!) and place it in a secure
location on your server, preferably above your “public_
html” or root-web directory.

Once the password file is in place, note its location for use
in the next step. This file should be named “.htaccess”
and should be placed into your wp-admin directory. Within
this file, add the following code and edit according to the
steps that follow:

 # SECURE LOGIN PAGE
 <IfModule mod_auth.c>
 AuthUserFile /full/path/.htpasswd
 AuthType Basic
 AuthName "Password Required!"
 <Files wp\-login\.php>
 Require valid-user
 </Files>
 </IfModule>

Secure Your Login
with SSL
If you are fortunate enough to have access
to SSL (Secure Sockets Layer) on your server
(either through Shared SSL or with your own SSL
certificate), you can greatly increase the security of
your admin session by encrypting your connection
via SSL. All you need is the following line placed in
your wp-config.php file:

// secure admin over SSL

define('FORCE_SSL_ADMIN', true);

If you would rather use a plugin for SSL, check out
the Admin SSL plugin at http://digwp.com/u/287,
which enables SSL on all pages for any WordPress
version 2.7 and greater.

Alternately, if you do not have SSL enabled, you
can still increase security by encrypting your
passwords with the Semisecure Login Reimagined
at
http://digwp.com/u/288. The plugin uses an RSA
public key to encrypt your password, which is then
decrypted on the server with a private key. Requires
JavaScript, but certainly a worthwhile alternative
to SSL.

http://digwp.com/u/284
http://digwp.com/u/285
http://digwp.com/u/286
http://digwp.com/u/287
http://digwp.com/u/288

339

Edit the full server path to match the location of your password file and you’re
good to go. With this method in place, access to your Login Page will require
the user to enter the username and password credentials specified in your
.htpasswd file. If you would like to extend this password-protection to your
entire wp-admin directory, modify the code as follows:

 # SECURE ADMIN DIRECTORY
 <IfModule mod_auth.c>
 AuthUserFile /full/path/.htpasswd
 AuthType Basic
 AuthName "Password Required!"
 Require valid-user

 </IfModule>

This level of protection serves as a strong deterrent against attacks. Each login
session expires when the browser is closed. If you experience any unexpected
issues with your password protection, simply remove the .htaccess code to
troubleshoot and restore original functionality. For more about Apache’s
password-protection module, check out the official site: http://digwp.com/u/289.

Other files that should be protected

In addition to those already mentioned, there are many other types of files that
you should protect as well. These files aren’t always associated directly with
WordPress, but there are many cases where these files are available and potentially
vulnerable. Here are a few types of files that you may want to protect explicitly:

• .htaccess

• .htpasswd

• php.ini

• PHP scripts

Red Carpet Treatment

Quick tip: you can allow direct
access to your Login Page by
adding the following lines to
the password method:

Allow from 123.456.789.0
Satisfy Any

http://digwp.com/u/289

340

• Flash source files (.fla format)

• Photoshop files (.psd format)

• Log files

As well as any other files involving configuration, custom scripts, or source content.
Protecting these is easily achieved by blocking access to files according to file type.
We can do this by targeting the different file extensions of the files. Simply place
the following code into the root HTAccess file of your site:

PROTECT SENSITIVE FILES BY FILE TYPE
<FilesMatch "\.(htaccess|htpasswd|ini|php|fla|psd|log)$">
 Order Deny,Allow
 Deny from all
 Allow from 123.456.789.0
</FilesMatch>

As in previous examples, change the IP address to match your own. It also easy to
protect specific files. For example, if we want to deny all external requests for two
files named “errors.php” and “test.html”, we could do this:

PROTECT SPECIFIC FILES
<Files ~ "^.*([Ee][Rr][Rr][Oo][Rr][Ss]|[Tt][Ee][Ss][Tt])">
 Order Deny,Allow
 Deny from all
 Allow from 123.456.789.0
</Files>

Here we account for both upper- and lower-case file requests via the regular
expression in the first directive. Keep in mind when using HTAccess files to protect
files that the directives are inherited and applied throughout the directory
structure, such that all sub-directories and their files will be evaluated
for processing.

341

9.1.6 Neuter the Default “admin” User Account
For millions of WordPress-powered blogs around the world, the default
user account is named “admin.” This is obviously a huge target for
attacks, exploits, and other malicious behavior. Thus, it is a good idea
to rename the default “admin” account to something a little less
obvious. Here are two different ways of doing this.

1. Add a new user with full administrative privileges. Log out and log
back in as the new user. Once inside, delete the default “admin”
user. During this process, you will be prompted to re-assign any
posts written by “admin” to a different author. You probably want
to use your newly created account for this.

2. Alternately, you can simply edit the default username directly in the WordPress
database. Using a MySQL interface such as phpMyAdmin, run the following SQL
command (remember to backup your database before meddling!):

 update wp_users set user_login='newuser' where user_login='admin';

 Replace the “newuser” in that command with your desired username and you
are good to go.

9.1.7 Remove the WordPress Version Number

Waste Their Time
Instead of deleting the default admin
account, some administrators prefer
to leave it intact but with reduced
privileges.

By leaving the default admin account
set at “subscriber,” an attacker would
theoretically waste their time hacking
into a useless account.

Screenshot of the excellent MySQL interface, phpMyAdmin, locked and loaded with the change-admin query.

342

Another good way to boost security is to hide the WordPress version number from
appearing in your source code. By default, many WordPress themes include the
version information in the document <head> with a note that says something like,
“leave this for stats please.” Statistics are certainly useful, but nowhere near as
important as security. Here is the code that many themes use to display this info:

<meta name="generator" content="WordPress <?php bloginfo('version'); ?>" />

To prevent this information from being displayed in older themes, you can simply
remove the previous line from your theme’s header.php file. In newer themes,
however, the entire meta tag is generated by the wp_generator function from deep
within the WordPress core. Fortunately it is just as easy to remove by adding the
following line to your active theme’s functions.php file:

<?php remove_action('wp_head', 'wp_generator'); ?>

9.1.8 Securing Your Database
As you should know, the default WordPress database prefix is “wp_”. Millions of
WordPress sites use this prefix, and attackers know this. Many SQL-injection attacks
and other automated exploits assume this default prefix during execution. Thus, by
changing this prefix, we can obscure our database and block a good percentage of
such automated attacks. There are plugins that will do this for you:

• WP Prefix Table Changer - http://digwp.com/u/290

• WordPress Table Prefix Rename - http://digwp.com/u/421

• WP Security Scan - http://digwp.com/u/292

Or, if you are comfortable doing so and prefer to have control over the process,
there are two ways of changing your own database prefixes, depending on
whether or not you already have installed WordPress. Let’s take a look.

More Information

For a more in-depth look into
the process of removing the
WordPress version number,
check out Digging into
WordPress:

http://digwp.com/u/381

http://digwp.com/u/290
http://digwp.com/u/421
http://digwp.com/u/292
http://digwp.com/u/381

343

Change your database prefix before installing WordPress

All that’s needed is to change the $table_prefix value in the wp-config.php file.
Check out this quick screenshot to the right:

You may change the prefix to whatever you like
using alphanumeric characters and underscores,
but your server configuration may limit the
allowed length of your table names. A good
technique is to use something like a mini-
password for your prefix. Remember to backup
your database before making any changes.

Change your database prefix on existing WordPress installations

A little more involved, but totally doable:

1. Backup your database (twice! hey, you can’t be too safe).

2. Edit your wp-config.php file with the new prefix value.

3. Using a database interface such as phpMyAdmin, log in to your database and
enter the following command for each of your database tables (change “xxx” to
your new prefix):

rename table wp_comments to xxx_comments;

rename table wp_links to xxx_links;

rename table wp_options to xxx_options;

rename table wp_postmeta to xxx_postmeta;

rename table wp_posts to xxx_posts;

rename table wp_terms to xxx_terms;

rename table wp_term_relationships to xxx_term_relationships;

rename table wp_term_taxonomy to xxx_term_taxonomy;

Pop-Quiz, Hotshot

How many MySQL tables
does WordPress create during
installation?

Answer on pg 345

344

Use Secret Keys to Increase Security
If you are using WordPress version 2.6 or better, you can increase your security by including a set of four
security keys in your wp-config.php file. Each of the four secret keys is a hashing salt that is used in conjunction
with your password to increase its effectiveness.

All you need to do is visit the free online generator at http://digwp.com/u/293 and paste the results (see
screenshot, below) into your wp-config.php file.

The four keys each consist of a long string of random characters. These keys may be changed at any time,
with the effect of invalidating all current cookies – i.e., anyone logged in before the change will need to re-
log-in after the change.

rename table wp_usermeta to xxx_usermeta;

rename table wp_users to xxx_users;

Also check for any other tables and rename them as well.

4. Open your “options” table and click on the “Browse” tab. In the “option_name”
column, locate the “wp_user_roles” field and change it to “xxx_user_roles”.

5. Open your “usermeta” table and click on “Browse” to browse the contents. In
the “meta_key” column, locate all fields prefixed with “wp_” and replace each of
them with your new prefix.

Once you have completed these steps, check your site thoroughly to ensure that
everything is working properly.

http://digwp.com/u/293

345

Alternate method of changing your database prefix

An alternate way of changing your prefix is to download your database as an SQL
file and search/replace all instances of “wp_” with “xxx_”. After that, drop your
old tables and import your edited SQL file. Lastly, edit your wp-config.php file as
described above and re-activate your plugins. That’s all there is to it. See? That’s
one of the joys of WordPress – there are so many ways to get things done!

9.1.9 Secure Multiple Installations
Note that if you have multiple installations of WordPress on the same server, it is
best to use different users for each of the different databases. For example, the
database access information should be unique in the wp-config.php files for each
of your WordPress installations. This security measure will ensure that an attacker
who gains access to one of your sites will not automatically enjoy access to all
of them.

9.1.10 Prevent Hotlinking
Hotlinking occurs whenever another domain displays your content on their site. For
example, if you run a blog about Hollywood celebrities, you will inevitably discover
that your images are being linked to directly and displayed on other celebrity sites.
This type of behavior is typically seen as worse than stealing content because your
bandwidth is also being hijacked. Preventing this type of behavior is important.

If your site features any content – images, videos, music, etc. – that you want to
protect from hotlinkers, there are a number of different methods from which to
choose. The easiest and most effective anti-hotlink method, in our experience, is
achieved via HTAccess:

HOTLINK PROTECTION

<IfModule mod_rewrite.c>

Pop-Quiz, Hotshot

From pg. 343

Answer: 10.

346

 RewriteEngine on

 RewriteCond %{HTTP_REFERER} !^$

 RewriteCond %{REQUEST_FILENAME} -f

 RewriteCond %{REQUEST_FILENAME} \.(gif|jpe?g?|png)$ [NC]

 RewriteCond %{HTTP_REFERER} !^https?://([^.]+\.)?domain\. [NC]

 RewriteRule \.(gif|jpe?g?|png)$ - [F,NC,L]

</IfModule>

To use the previous code, only one edit is required: change the term “domain”
to match your actual domain. For example, if your domain name is http://www.
website.com/, you would replace “domain” with “website”. Note that this code is
set to protect the following file types: .jpg, .jpeg, .jpe, .gif, and .png. To protect
additional files, such as those with the .ico format, simply add “|ico” (a vertical
bar followed by the “ico” extension) after the “|png” in both the 6th and 8th lines.
For much more on protecting your site against “teh evil hotlinking scum,” check
out the Perishable Press article listed at http://digwp.com/u/294.

9.1.11 More WordPress Security Help
With any site, there is always a way to improve its existing security strategy.
For more information and tools for securing your WordPress site, check out the
following plugins:

• Maximum Security plugin - http://digwp.com/u/295
Guards against intrusion, tracks system events, blocks malicious content, and
includes a strong Web application firewall and intrusion prevention system.

• WordPress AntiVirus - http://digwp.com/u/296
Smart and effective solution to protect your blog against exploits and
spam injections. Features manual testing, auto notifications, and whitelist
functionality.

Note

This will prevent users reading
via online RSS reader from
seeing images as well. To fix
this inconvenience, check out
this tasty post:

http://digwp.com/u/418

Pharma Hacked!

Recently, WordPress sites have
been hit with the so-called
"Pharma Hack" - a hidden
spam-injection hack that is
near-impossible to detect and
equally difficult to eradicate.

Elimination and protection
against the nasty Pharma
Hack and many others is
possible using a combination
of "lockdown" methods which
we describe at DigWP.com:

http://digwp.com/u/486

This section's list of security
plugins has been updated to
include those recommended in
our Lockdown tutorial.

http://digwp.com/u/294
http://digwp.com/u/295
http://digwp.com/u/296
http://digwp.com/u/418
http://digwp.com/u/486

347

• Secure WordPress - http://digwp.com/u/489
Provides many important security measures, including protection against bad
queries and complete removal of sensitive, auto-generated information.

• WP Security Scan - http://digwp.com/u/9
Scans your WordPress installation for known security vulnerabilities and
suggests corrective actions. Features include passwords, permissions, and more.

• WP File Monitor - http://digwp.com/u/487
Scans your WordPress files for malicious code and notifies you with the results.
When files are changed, moved, added or removed, this plugin lets you know.

• Ultimate Security Check - http://digwp.com/u/488
Scans for “hundreds of known threats” and grades security performance.
Provides a great overview of your site’s security. And it’s incredibly easy to use.

• BlogSecurity’s WPIDS plugin - http://digwp.com/u/8
Detects attacks and blocks them. Each intrusion is clearly visible and an error is
displayed, making administration easier than in previous versions.

• AskApache Password Protect - http://digwp.com/u/5
Protects your site by blocking automated attacks, spam, and other nonsense.
Helps to secure wp-admin, wp-includes, wp-content, and plugins as well.

• WordPress Firewall - http://digwp.com/u/10
Blocks potential attacks based on a list of potentially suspicious parameters.

• Login Lockdown - http://digwp.com/u/7
Blocks the IP address of any user with too many failed login attempts.

• Stealth Login - http://digwp.com/u/12
Enables creation of custom URLs for logging in and other administrative tasks.

• Exploit Scanner - http://digwp.com/u/490
Searches your site’s files, plugins, and database for suspicious business.

• Safer Cookies - http://digwp.com/u/13
Prevents unauthorized Admin access by making your cookies IP-specific.

SSL Security Plugins

Here are two excellent plugins
that secure your site via SSL:

Force SSL - Establish secure
SSL connections by redirecting
HTTP requests to HTTPS.

http://digwp.com/u/17

Admin SSL - Secure your site’s
sensitive areas with private or
shared SSL goodness.

http://digwp.com/u/14

Lockdown Collection

Underlined titles indicate
plugins used in the DigWP
Security Lockdown:

http://digwp.com/u/501

http://digwp.com/u/489
http://digwp.com/u/9
http://digwp.com/u/487
http://digwp.com/u/488
http://digwp.com/u/8
http://digwp.com/u/5
http://digwp.com/u/10
http://digwp.com/u/7
http://digwp.com/u/12
http://digwp.com/u/490
http://digwp.com/u/13
http://digwp.com/u/17
http://digwp.com/u/14
http://digwp.com/u/501

348

• Block Bad Queries (BBQ) - http://digwp.com/u/492
Blocks excessively long request strings and other bad strings in the request URI.

• InspectorWordpress - http://digwp.com/u/16
Monitors and logs requests to your WordPress-powered site.

9.2.1 Stopping Comment Spam
While we’re discussing security methods, it is important to take a look at different
ways to stop comment spam. Comment spam plagues just about every comment-
enabled or forum site on the Web, and WordPress-powered sites are no exception.
Fortunately, there are many top-notch developers contributing plugins, scripts and
strategies to help fight the war against spam. Here are some of the best:

• Akismet - http://digwp.com/u/298
King of anti-spam plugins. Bundled with WordPress. Must-have.

• Defensio - http://digwp.com/u/299
Excellent anti-spam plugin. Great alternative to Akismet. Many features.

• Typepad Antispam - http://digwp.com/u/300
Developed by Six Apart. Reported to work as well as Akismet.

• Bad Behavior - http://digwp.com/u/301
Anti-spam protection plus additional security features.

• Comment Guard Pro - http://digwp.com/u/302
Provides multiple layers of protection against all types of spam.

• Simple Spam Filter Plugin - http://digwp.com/u/303
Captcha-based. Designed to work with existing anti-spam plugins.

• WP-SpamFree - http://digwp.com/u/304
Virtually eliminates automated comment spam. No captchas. No false positives.

• NoSpamNX - http://digwp.com/u/305
Adds extra hidden fields to your comment form to catch bad bots.

http://digwp.com/u/492
http://digwp.com/u/16
http://digwp.com/u/298
http://digwp.com/u/299
http://digwp.com/u/300
http://digwp.com/u/301
http://digwp.com/u/302
http://digwp.com/u/303
http://digwp.com/u/304
http://digwp.com/u/305

349

• Invisible Defender - http://digwp.com/u/306
Another good way to add hidden fields to your comment form to stop bad bots.

In addition to these incredible plugins, there are a few other helpful tricks that
you may want to try. Let’s take a look at some choice techniques in the next few
sections of this chapter.

9.2.2 Configuring Your WordPress Admin Options
Configuring your Admin options with the most restrictive comment settings is a
much underrated method of reducing and preventing a great deal of comment
spam. In the Admin > Settings > Discussion options page, there are several options
that enable you to take strong action against spam. The most restrictive option
would be of course to simply require moderation of all comments. This would
theoretically prevent all spam, since you would be filtering them out manually.

This really isn’t an option for sites that feature a lot of comments, so the next most
restrictive setting would be to only allow comments from people who have already
had a comment approved. By requiring the commentator to have a previously
approved comment, you drastically reduce the chances that a spam comment will
appear on your site.

9.2.3 Using the Built-In Comment Moderation

Also, under Admin > Settings > Discussion you will find three powerful anti-spam
options. The first is a link-filtering option that automatically holds comments in the
moderation queue if they contain “x” number of links. Since links are frequently
the payload of spam comments, moderating any comments containing, say, two or
more links is a great strategy.

Anti-Spam Cornucopia

For even more excellent anti-
spam plugins for WordPress,
check out Chapter 7.6.3.

http://digwp.com/u/306

350

There is also a large input field that may be
used to list any characters, phrases, or even IP
addresses that you would like to pre-approve
if found in the comment.

For example, if you want to moderate any
comments containing the phrase “Viagra,” or
that come from an IP address of 123.456.789.0,
then you would list these items as shown in
this screenshot:

9.2.4 Using the Built-In Comment Blacklist
And, even better than WordPress’ Comment
Moderation is the built-in “Comment
Blacklist.” Also located on the Discussion
Settings page, the Comment Blacklist works
exactly like the moderation list, only instead
of being held for moderation, any comments
containing blacklisted phrases will be
immediately marked as spam and discarded.

Be mindful when using this technique
– all terms and phrases are treated as
regular expressions, such that you may be
inadvertently dumping legitimate comments.

9.2.5 Disabling Comments on Old Posts
Spammers frequently target old posts because they have been indexed in the
search engines and have had more time to accumulate page rank. So, as the
number of posts in your archives increases, you will inevitably find yourself dealing
with lots of spam and other nonsense on older posts.

Careful with that Axe

When configuring your
Comment Blacklist, choose
phrases that will not appear as
parts of “legitimate” words.
We're dealing with regular
expressions here, so make sure
that you aren’t unintentionally
trashing any legitimate
comments. Fortunately, many
drug names are very unique.

351

An easy solution to this is to simply disable comments on all posts that are older
than “x” number of days. For example, digwp.com automatically closes comments
after 90 days.

Any reasonable amount of time should work fine. For more information on
manually disabling comments on old posts, refer to Chapter 7.3.7.

9.2.6 Deny Access to No-Referrer Requests
Many spambots target WordPress’ comment script directly, bypassing your
comment form entirely. An easy way to circumvent this behavior is to deny all
requests for the comment script that do not originate from your domain. This is
another HTAccess trick that we may write like this:

DENY ACCESS TO NO-REFERRER REQUESTS

<IfModule mod_rewrite.c>

 RewriteCond %{REQUEST_METHOD} POST

 RewriteCond %{REQUEST_URI} .wp-comments-post\. [NC]

 RewriteCond %{HTTP_REFERER} !.*digwp\. [OR,NC]

 RewriteCond %{HTTP_USER_AGENT} ^$

 RewriteRule (.*) - [F,L]

</IfModule>

Edit this code so that the domain name (“digwp”) matches your own. As is, this
code will simply deny access to the requested comment script. To redirect the
spammers instead, replace the RewriteRule with this:

RewriteRule ^(.*)$ http://%{REMOTE_ADDR}/ [R=301,L]

352

This will bounce the spammers back to where they came from. Nice, but you
may prefer to send them someplace else. To do so, simply edit the URL (i.e., the
“http://%{REMOTE_ADDR}/” portion) to whatever you wish.

By blocking all requests for the comments-processing script (wp-comments-post.php)
that are not sent directly from your domain (via comments.php), you immediately
eliminate a large portion of blog spam. For more information on this technique,
check out the Perishable Press article at http://digwp.com/u/307.

9.3.1 Monitoring and Fixing Errors
As you set up and run your site, it is a good idea to keep an eye on any errors
that pop up. There are several ways to do this, depending on your familiarity with
your server logs and how they work. Many hosts provide access to automatically
generated server access logs. These are useful for diagnosing patterns relating to
spam, broken URLs, and malicious attacks.

Additionally, many servers make available error logs or will automatically generate
PHP error files that appear in the root directory of the site. Keeping an eye on
these access and error logs is good practice as it will often enlighten you about
broken scripts, plugins, links, and much more.

Especially important is keeping a close eye on 404 Not Found errors. If your site
has too many broken links and missing pages, your site’s pages may suffer in the
search-engine listings. The bad news is that large sites with thousands of pages
are difficult to check by hand in a thorough manner. The good news is that there
are several great methods for accomplishing this in an easy, automated way. Let’s
examine a few of the best.

9.3.2 Alex King’s 404 Notifier Plugin
Alex King’s 404 Notifier is an excellent plugin by one of the top WordPress

http://digwp.com/u/307

353

developers. Logs all 404 Not Found errors with the option of automatically
notifying the site owner of each 404 incident via email or RSS. Requires permalinks
to be enabled. Check it out at http://digwp.com/u/309.

9.3.3 Broken Link Checker Plugin
Keeping an eye on your site’s links can be a seriously daunting task, especially as
your site continues to grow in size and complexity. Over time, your outgoing links
may break or end up pointing to something unintended. Good, solid links are
the cornerstone of the Web; broken links fail to help your visitors and may cause
the search engines to consider your page or site less favorably, especially if many
broken links are present.

To prevent this scenario, there is an awesome plugin called Broken Link Checker
http://digwp.com/u/310 that monitors your site and helps you manage broken links.
Once installed, Broken Link Checker works quietly in the background, testing your
links and reporting any that are broken or redirected. The plugin monitors all parts
of your site, including custom fields (optional). Also detects missing images. Link-
checking intervals are completely configurable. Provides options for broken links,
including unlinking, editing, and deleting. Truly an awesome plugin.

The one shortcoming of using an automated method for checking your links,
however, is the case where a linked page has been changed or redirected to
include undesirable content. Because the link resolves to a working page, it will
be assumed as valid and thus will not be included in the broken-link report.
Beyond this scenario, automating the process of checking broken links can be a
tremendous help.

9.3.4 Other Error-Logging Techniques
Logging errors and activities for your site is critical for better control over your
website. Here are some plugins that can help get the job done:

http://digwp.com/u/309
http://digwp.com/u/310

354

• WordPress to Syslog (WPsyslog2) - http://digwp.com/u/311
WPsyslog2 is a global logging plugin that tracks all system events and logs them
to syslog for your analytical use. Tracks new posts, new profiles, new users,
failed logins, successful logins, logouts, and much more.

• Mod_Security - http://digwp.com/u/312
An open-source web-application firewall for Apache that logs activity and
protects your site in real-time.

• Post Logger plugin - http://digwp.com/u/313
Reveals the intimate details of the $POST variable for each request, enabling
you to keep a better eye on what’s happening behind the scenes with your
comments.

• TTC WordPress Tripwire Tool - http://digwp.com/u/314
Provides you with a list of all files changed on your WordPress site within the
specified period of time.

• Sucuri - http://digwp.com/u/315
Sucuri is an online network monitoring service that notifies you immediately
after changes have been to your website, DNS records, WHOIS information, SSL
certificate, or blacklist status.

9.3.5 Online Monitoring Services
An important part of developing and running a successful, well-optimized site is
making sure it is always available to your visitors. In a perfect world, your site’s
uptime would be 100%. But thanks to server issues, software conflicts, malicious
scripts, and cracker exploits, it is virtually inevitable that your site will go down
from time to time.

While you can’t prevent periods of unexpected downtime, you can increase your
ability to respond in a timely manner by using an online monitoring service.
Monitoring services basically keep any eye on your site and notify you when they
become unavailable. There are many monitoring services available, both free and
otherwise, each with their own way of tracking your site and reporting statistics.

http://digwp.com/u/311
http://digwp.com/u/312
http://digwp.com/u/313
http://digwp.com/u/314
http://digwp.com/u/315

355

Here are some of the best:

• Are My Sites Up? - http://digwp.com/u/316
Fast, easy, and reliable site monitoring service that provides free
monitoring of up to five sites 25 times per day. Premium service also
available with tons more features. iPhone application available.
Highly recommended :)

• Pingdom - http://digwp.com/u/317
Provides email and SMS alerts when your site is unavailable. Monitors
uptime and overall performance.

• Mon.itor.us - http://digwp.com/u/318
Free website monitoring services with email alerting. Provides uptime
and response-time reports. Alert formats include email, IM, SMS,
and RSS.

• Montastic - http://digwp.com/u/319
Free monitoring service with email and RSS alerts. Monitors up to 100
URLs every 10 minutes. Notifies you when your site’s availability has
been restored.

• Service Uptime - http://digwp.com/u/320
Free monitoring for one URL at 30-minute intervals. Alerts sent via email
or SMS. Uptime reports available.

Get Automatic Upgrade Emails
The alert messages provided in the WordPress Admin are great, but they don’t work if you never log in
to your website’s admin area.

Fortunately, the Update Notifier plugin http://digwp.com/u/329 takes care of this by sending you daily
email notices whenever new versions are available.

This makes it easy to keep an eye on large numbers of sites without having to log in or subscribe to any
RSS feeds. Simply install and forget about it. As soon as it’s time for action, you’ll get an email letting
you know.

http://digwp.com/u/316
http://digwp.com/u/317
http://digwp.com/u/318
http://digwp.com/u/319
http://digwp.com/u/320
http://digwp.com/u/329

356

• Site Uptime - http://digwp.com/u/321
Free monitoring for one URL at 30-minute intervals. Premium services include
shorter monitoring intervals and more reporting features.

• BasicState - http://digwp.com/u/322
Free website uptime monitoring service that checks unlimited sites every 15
minutes. Provides instant trouble alerts by email or SMS. Recommended.

• Site 24X7 - http://digwp.com/u/323
Free monitoring for two URLs at 60-minute intervals. Monitors your site from
multiple geographical locations. Alerts via email and SMS.

• Binary Canary - http://digwp.com/u/324
Free website and device monitoring featuring 15-minute intervals for up to
five URLs. Supports both HTTP and HTTPS. Paid accounts include 1-minute
monitoring of nearly any device.

• Dotcom-Monitor - http://digwp.com/u/325
Robust monitoring featuring multiple users, user-permissions, data reports, and
user-specific alerts.

• Webmetrics GlobalWatch - http://digwp.com/u/326
Monitors websites, applications, and services. Diagnoses downtime and provides
performance reports and flexible alerts. Supports Flash, Java, and Ajax.

And that’s just the tip of the iceberg! For a huge list of server monitoring services &
website monitoring software, check out this valuable resource: http://digwp.com/u/327.

9.4.1 Staying Current with WordPress
Of course, one of the best ways to keep your site secure is to stay current with
WordPress. While working in the WordPress Admin, keep an eye out for any alert
messages informing you of available updates, either for the WordPress core or for
individual plugins.

Staying current with the latest versions of WordPress ensures that your site receives

http://digwp.com/u/321
http://digwp.com/u/322
http://digwp.com/u/323
http://digwp.com/u/324
http://digwp.com/u/325
http://digwp.com/u/326
http://digwp.com/u/327

357

all the latest security patches, bug fixes, and script improvements. Likewise,
keeping your plugins up-to-date ensures compatibility with the latest versions of
WordPress and helps keep everything running smooth in general.

While we’re on the subject, serious WordPress developers and users may benefit
from reading the WordPress Development blog, which is displayed by default
in your WordPress dashboard. This is a great place to learn about all the latest
WordPress development news.

And, if you happen to discover a bug while working with WordPress, you may
report it at the designated page via the WordPress Codex http://digwp.com/u/328. If
you think that you have discovered a security vulnerability, email the security team
at “security@wordpress.org” with the information and wait for a response before
sharing it anywhere else.

9.4.2 Updating WordPress
Those of us who have used WordPress for any length of time understand well
how frequently new versions of WordPress are released. When everything goes
according to plan, WordPress is updated four times every year. That’s a lot of
upgrading for everyone involved: users, designers, and developers. Fortunately,
the busy WordPress devs have integrated an easy way to stay current: automatic
updates from the comfort of the WordPress Admin!

Before WordPress 2.7, upgrading to the latest version of WordPress required
manually uploading files to your server. In 2.7 or better, you simply need to
navigate to the “Tools > Upgrade” page of the Admin area and click on the
“Upgrade” button. If your server is properly configured and everything goes as
planned, the WordPress core will be updated with a single click!

Likewise for plugins – single-click installs and updates for any plugin listed in the

http://digwp.com/u/328

358

WordPress Codex. To install a plugin, go to “Plugins > Add New” in the Admin
area and knock yourself out. There you will be able to search the WordPress
Plugin repository and install any plugin by clicking on the “Install” button in the
right-hand column. Similarly, to update any of your installed plugins, click on the
“update” link when it becomes available. Automated convenience at its best.

As useful as this is, however, keep in mind that there are several situations where
manual upgrades – for core files and/or plugins – are a better way to go about it.
Here are some scenarios where manual updating might prove more beneficial:

• If you are running an older (pre-2.7) version of WordPress

• If you have a highly customized site with lots of core hacks, mods, etc.

• Your server settings forbid this type of behavior

In these and other situations where automatic upgrading is neither possible nor
advisable, you should take the time to upgrade manually. It isn’t always fun, but
staying current is one of the best ways to ensure that your site is kept secure.

9.4.3 Logging Changes
How do you know if your site has been hacked? If some unscrupulous attacker
breaks into your site and injects a few thousand invisible spam links, how would
you know? Waiting until your site is penalized by Google is a bad strategy. Instead,
check out these plugins that will keep an eye on your site and notify you if
anything changes:

• WordPress File Monitor - http://digwp.com/u/330
Monitors your WordPress installation for added/deleted/changed files. When a
change is detected an email alert can be sent to a specified address.

• MonitorHackdFiles - http://digwp.com/u/331
Watches your site, and when it detects a file has changed (or been added), it
notifies you via email and tells you which file was changed.

Know thy files

If you are automatically
updating your plugins and/
or core files through the Admin
(or any other method), it is
wise to remember that the files
on the server will be newer
than the ones on your local
machine. This may sound
totally obvious, but much
confusion and many errors may
be avoided by not overwriting
updated files with older ones.
A good way to prevent this is
to either use some sort of a
version control system (such
as Subversion), or else play it
safe and go with the manual-
update method.

http://digwp.com/u/330
http://digwp.com/u/331

359

• ChangeDetection.com - http://digwp.com/u/332
Free online service that monitors your site and sends you an email/SMS
if anything changes. Simple, easy, and effective.

9.4.4 Backing Up Your Database and Files
As with all work that is done on a computer, it is essential to ensure
that regular backups are made of your work. For dynamically powered
websites such as those powered by WordPress, this practice involves
backing up your database, core files, and added content.

The easiest way to keep regular backups of your database is to use the
WP-DBManager plugin http://digwp.com/u/334. This is a powerful backup
plugin that provides a ton of features, including everything from
scheduled database optimizations to completely customized database
backups. Backup databases are then stored either on your server or
delivered to you via email. This plugin does require a specific server
configuration in order to work, so if things don’t go well, you will need
to either use an alternate plugin or backup your database manually.

Fortunately, using a MySQL interface such as phpMyAdmin makes the process
of creating manual backups very easy. Simply log in, choose your database from
the left sidebar, and click the “Export” tab. From the “Export” page, check the
following settings, which may be different depending on your specific situation:

Another good practice is to backup your physical files. These include
the entire WordPress core along with any additional files or content
that you may have added. It is a good idea to back up these files
periodically, as well as specifically before any upgrades, updates,
or other modifications. To backup your content files automatically,
check out the Content WP Backup plugin: http://digwp.com/u/335.

Wait, there is Another…

Although WP DBManager would be our first
choice, there is another database plugin called
WordPress Database Backup that focuses entirely
on one task: backing up your database. Check it
out at: http://digwp.com/u/333

http://digwp.com/u/332
http://digwp.com/u/334
http://digwp.com/u/335
http://digwp.com/u/333

360

9.5.1 Optimizing WordPress
There are many ways to optimize the already-great, out-of-the-box performance
of WordPress. Let’s take a look at a few of the most effective ways to improve the
speed and consistency of your site.

9.5.2 Content and File Caching
Each time a visitor requests a page from your site, the server kicks into gear,
processing scripts and querying the database to generate the page. For sites with
small amounts of traffic, the load on your server is probably not a big deal and
your pages should load just fine. For highly trafficked sites, however, the strain on
the server to crank out thousands or millions of pages can really slow things down.

A great way to circumvent this problem is to install a caching plugin for your
WordPress-powered site. A good caching plugin reduces server load by generating
a static copy of each requested page and then delivering that for all subsequent
requests. Serving static pages requires fewer resources from your server and can
speed things up considerably. Here are a few of the most popular caching plugins:

• WP Cache - http://digwp.com/u/336
Stores and delivers static versions of your pages. Saves work for the database,
but still uses the PHP engine to operate.

Choose the Right Host
Perhaps the best way to ensure that your site is running as fast, smooth, and consistent as possible is to
find the best host. More than anything, with web hosting, you get what you pay for. If you are serious
about running a solid site that is fast and reliable, stay away from cheap, sold-out web hosts and find
something with excellent servers and strong service.

We can’t stress this enough: a good host is worth the extra money. Of course, just because a host costs
more doesn’t necessarily mean that it’s actually better.

Our advice? Do your research, check the message boards, and email your favorite sites for tips and clues
on finding the right host.

http://digwp.com/u/336

361

• WP Super Cache - http://digwp.com/u/337
Creates static HTML versions of your pages, eliminating the need to invoke PHP
and the database.

• DB Cache - http://digwp.com/u/338
Faster performance by caching database queries instead of HTML output.

• Batcache - http://digwp.com/u/339
Uses memcached to store and serve rendered pages. Not as fast as WP-Super-
Cache but it can be used where file-based caching is not practical or not desired.

• Hyper Cache - http://digwp.com/u/340
Stores HTML page output as file content. Uses the PHP engine.

• AskApache Crazy Cache - http://digwp.com/u/341
Works in tandem with WP-Cache, WP Super Cache, or Hyper Cache to cache
your entire blog.

• WP Cache Inspect - http://digwp.com/u/342
Displays information about cached content and provides useful options
for management.

It is important to read the documentation carefully before installing any of these
caching plugins. In general, caching is a process that fundamentally affects the
way your site performs, so it is important to understand the pros and cons of each
plugin as well as the requirements for installation. You definitely should not try to
combine caching plugins unless you really know what you’re doing. And even then,
we don’t recommend it.

One thing to keep in mind is that there are some common downsides to using
WP Cache, WP Super Cache, and some of the others, namely the inability to track
certain page statistics, outdated content displayed in sidebars, and other issues
involved with trading dynamic functionality with static page delivery.

http://digwp.com/u/337
http://digwp.com/u/338
http://digwp.com/u/339
http://digwp.com/u/340
http://digwp.com/u/341
http://digwp.com/u/342

362

9.5.3 File Compression Methods
Another excellent way to improve performance while also saving bandwidth is
to compress your web pages and other site content. Compression does exactly
what you would expect: files and content are compressed by the server in order
to reduce their overall size. Once the content is received by the browser, it is
immediately uncompressed and displayed properly. This results in faster loading
times and reduced bandwidth usage.

While a complete excursion into the realms of file compression is well beyond the
scope of this book, here are a few ideas to get you started in the right direction:

• File compression via Apache’s gzip module - for servers running older
versions of Apache, an easy and effective way to compress your content is to
enable mod_gzip via your server configuration or root .htaccess file.

• File compression via Apache’s deflate module - for servers running newer
versions of Apache, an easy and effective way to compress your content is to
enable mod_deflate via your server configuration or root .htaccess file.

• File compression via PHP - It is also possible to compress your files using PHP’s
output buffer. This method usually involves adding a small snippet of code to
the beginning of your theme’s header.php file.

• Manual file compression - For JavaScript, CSS, and other static files, it is also
possible to implement compression manually. This typically requires gzipping
the files in question and then delivering them via targeting script to supportive
browsers.

• Minifying CSS and JavaScript files - Apart from compressing the actual file,
it is also possible to compress the contents of your CSS and JavaScript files. This
process is called “minifying” and usually involves removing as much white-space
as possible. For JavaScript, there are also additional techniques that further
reduce the size of the file.

 Spoiled rotten, WordPress users enjoy such awesomely useful plugins as WP
Minify http://digwp.com/u/344 and PHP-Speedy http://digwp.com/u/345 that will minify,
compress, combine, and cache your CSS and JavaScript files. There are also some

http://digwp.com/u/344
http://digwp.com/u/345

363

great online services for compressing CSS and JavaScript file content, including
these great sites:

 • YUI Compressor - http://digwp.com/u/347

 • Dean Edwards Packer - http://digwp.com/u/346

 • JavaScript Compressor - http://digwp.com/u/349

 • Another JavaScript Compressor - http://digwp.com/u/348

 • Styleneat.com - http://digwp.com/u/350

 • JSMin - http://digwp.com/u/351

While there are many different ways to take advantage of file compression, your
implementation will depend on the tools and resources available to your server. If
possible, enable mod_gzip or mod_deflate and forget about it. Otherwise, if these
modules are not available to you, there are many other solutions available.

9.5.4 Optimizing CSS and JavaScript
If all that server/database compression/optimization stuff leaves you gasping for air,
relax – a significant amount of optimization can be accomplished by focusing on
the code and content used to create the user interface. By optimizing the content
of JavaScript, CSS, and even HTML files, you can reduce file size, save bandwidth,
and reduce loading times for visitors. Here are some key strategies that will help
you to optimize various types of code:

• Keep your code clean! - Eliminate unnecessary comments and superfluous
markup. Focus on clean, well-written code and you will have a strong
foundation for optimizing your pages.

• Keep HTTP requests to a minimum - One of the best ways to improve the
loading times for your pages is to reduce the number of HTTP requests to the
server. Every JavaScript file, CSS file, and image requires its own HTTP request
and thus slows down loading time. By consolidating multiple CSS and JavaScript
files and implementing “sprite” techniques, you can reduce the number of HTTP

Optimize with WP CSS

If you don’t mind an
additional plugin to optimize
your CSS files, you’ll want to
check out WP-CSS.

WP-CSS uses a shorthand
technique to strip extraneous
whitespace from your CSS
files. Then after reducing file
size, WP-CSS compresses
your CSS files with Apache’s
powerful gzip compression. It
even includes any @import
files into the mix.

http://digwp.com/u/355

Easy PHP Compression

More information on how to
compress your files with PHP:

http://digwp.com/u/343

http://digwp.com/u/347
http://digwp.com/u/346
http://digwp.com/u/349
http://digwp.com/u/348
http://digwp.com/u/350
http://digwp.com/u/351
http://digwp.com/u/355
http://digwp.com/u/343

364

requests and increase the performance of your site.

• Use sprites for images - Put simply, sprites are multiple images consolidated
into a single image. By strategically placing different images in a single image
file, we decrease latency in visual display while also reducing the overall number
of HTTP requests. Sprites are commonly used together with CSS to create
stunning and effective rollover effects, background imagery, and more.

• Include your stylesheets at the top of your pages - When including
external stylesheets in your pages, be sure to include them at the top of the
page in the <head> section. This will enable browsers to render your pages
progressively, which makes them appear to load much faster than they would
otherwise.

• Include JavaScript at the bottom of your pages - When including external
JavaScript files, placing them at the bottom of the page, just before the closing
<html> element, ensures that your clients’ browsers are able to download
the maximum number of components, decreasing load times and improving
performance.

• Validate your code! - One of the best ways to ensure that you are adhering to
the principles of modern web design and web standards is to check your code
with an online validator. After checking your page, the validator will return
a report telling you either that your code has passed with flying colors, failed
miserably, or anything in-between. If there are problems with your code, the
validator will explain each issue and provide suggestions for fixing them.

There are many different validators available depending on code type, however,
the W3C (World Wide Web Consortium) provides just about everything you need
right under one roof. Here are some URLs for two of their free
code-validation services:

• W3C (X)HTML Validator - http://digwp.com/u/353

• W3C CSS Validator - http://digwp.com/u/354

Spriting Made Easy

Creating sprites is an art form
that many have yet to master.
Thankfully, designers now
have a free online service that
automagically creates sprites
for you:

http://digwp.com/u/352

http://digwp.com/u/353
http://digwp.com/u/354
http://digwp.com/u/352

365

9.5.5 Reducing the Number of HTTP Requests
One of the biggest factors of site performance is the number of HTTP requests that
your pages are making to the server. Each request for a CSS file, JavaScript file,
image, or any other external file requires a separate call to the server, which then
must acknowledge, process, and return the requested file. When you have too
many files linked to a document, either in the <head> area or in the content itself,
your site’s performance may be negatively affected. This effect is easily seen by
comparing the load times of sites that include many different CSS and JavaScript
files with sites that have taken appropriate measures to reduce the overall number
of requests made by their pages. Here are a few tips for reducing the number of
HTTP requests made by your site:

• Eliminate unnecessary files - Anything that you are calling from your web
page that is not absolutely essential should be cut out from the picture. When
possible, replace design-related images such as rounded borders with pure CSS
alternatives.

• Consolidate CSS files - Instead of linking to five different CSS files, combine
them into a single, optimized file. If you’re not sure, check your source code -
you may be surprised to find that some of your plugins are calling additional
CSS files.

• Consolidate your JavaScript files - As with your CSS files, combine
multiple JavaScript files into a single, optimized file. Check your source code
and consolidate anything that you can get your hands on. Just make sure to
preserve the order of appearance of the various scripts.

• Use image sprites - If your theme design makes heavy use of images, the
number of HTTP requests may be very high indeed. Check your design and look
at the images being used. If any of them can be combined into a single image,
then try to do so. Granted, combining images into so-called “sprites” is a bit
of a dark art, but with a little research and some practice, you will find the
reward of improved performance to be well worth the effort. A great example
of image sprites is seen with social-media icons that have been combined into
a single file and then positioned differently for each link with a little CSS. This
one technique can drastically cut down on requests and help speed things up.

Hey Look, it’s a Sprite!

In this social-media sprite,
all of the icons are contained
within a single, transparent
PNG and simply shifted with
CSS to display the appropriate
image being called.

366

How to Stop Leeching and Improve
Site Performance
As explained in section 9.1.10 of this chapter, “hotlinking” is bandwidth theft that happens
whenever another site is linking directly to your files. For example, if you have some spicy
picture of Chewbacca in a swimsuit, you may quickly discover that unscrupulous bastards
are linking directly to it, stealing your image, your bandwidth, and your traffic. To prevent
this sort of leeching, add the following slice of HTAccess code to your site’s root .htaccess
file (or Apache configuration file):

HOTLINK PROTECTION

<IfModule mod_rewrite.c>

 RewriteEngine on

 RewriteCond %{HTTP_REFERER} !^$

 RewriteCond %{REQUEST_FILENAME} -f

 RewriteCond %{REQUEST_FILENAME} \.(gif|jpe?g?|png)$ [NC]

 RewriteCond %{HTTP_REFERER} !^https?://([^.]+\.)?domain\. [NC]

 RewriteRule \.(gif|jpe?g?|png)$ - [F,NC,L]

</ifModule>

There are of course many ways to customize this code, including changing the domain
name to match your own, adding additional approved domains to the list (so your images
are visible in feed readers, for example), and so on. As-is, this code simply returns a 403
Forbidden error for anything other than your site that is requesting images. This may be
changed to return some nasty image, so that people who try to steal your zesty picture
of Chewbacca will get some nasty shot of your armpit instead. Currently, this code blocks
hotlinking for GIFs and JPGs, but you can add many other types of files to the list as well.

For a more comprehensive look into the fine art of protecting your site against hotlinking,
check out http://digwp.com/u/294.

http://digwp.com/u/294

367

• Combine CSS and JavaScript - There are many great resources available on
the Web for consolidating, combining, and compressing your CSS and JavaScript
files. WordPress users should check out WP Minify http://digwp.com/u/344, which
uses the Minify PHP-5 application http://digwp.com/u/356 used to combine multiple
CSS and JavaScript files, compress their contents, and serve the results with HTTP
encoding (gzip or deflate) and headers that allow optimal client-side caching.

• Progressive image-loading - Instead of loading all of your images at once,
delay loading of images in long web pages until the user scrolls down to the
next section of the web page. This is opposite of preloading all of your images
at once. With progressive image-loading, users will experience a slight delay
in the loading of images as they scroll down the page, but for pages with lots
of images, progressive loading can reduce the number of simultaneous HTTP
requests and greatly improve performance for the initial page load. Check
out the jQuery plugin, Lazy Load http://digwp.com/u/493, to easily implement
progressive image loading on your site.

• Use a content-distribution network - A Content Delivery Network (CDN)
is a network of computers cooperating to deliver content for web sites. Using
additional servers to deliver images, downloadables, and other static files
reduces the load of your primary server while improving the performance and
scalability of the overall website. Some commercially available CDNs include:

 • Akamai Technologies - http://digwp.com/u/364

 • Amazon CloudFront - http://digwp.com/u/358

 • BitGravity - http://digwp.com/u/359

 • CacheFly - http://digwp.com/u/360

 • Internap - http://digwp.com/u/361

 • Limelight Networks - http://digwp.com/u/363

 • Mirror Image Internet - http://digwp.com/u/365

 • SteadyOffload - http://digwp.com/u/362

http://digwp.com/u/344
http://digwp.com/u/356
http://digwp.com/u/493
http://digwp.com/u/364
http://digwp.com/u/358
http://digwp.com/u/359
http://digwp.com/u/360
http://digwp.com/u/361
http://digwp.com/u/363
http://digwp.com/u/365
http://digwp.com/u/362

368

While working to reduce the overall number of HTTP requests for your site, there
are several ways to check how many requests are being made from your pages. By
simply opening a text editor and scanning your CSS file for all instances of the
“url()” value, you can determine how many images are being called just for your
design.

In your browser, you can also check the source code of your pages and examine the
number of files linked to in the <head> area. By searching your source code for all
instances of “<img”, you can see how many regular images are being called.

If you are using Firefox, the awesome and absolutely essential Firebug extension
http://digwp.com/u/366 can be used with Yahoo’s helpful YSlow add-on
http://digwp.com/u/379 to analyze your site’s performance in real time, with nice
graphical representations showing many different aspects of your site, including
the overall number and duration of HTTP requests.

Here is a screenshot showing how Firebug together with YSlow can help you
analyze the number of HTTP requests made by any page:

http://digwp.com/u/366
http://digwp.com/u/379

369

9.5.6 Plugin Maintenance
Many articles on the Web will advise you to disable unused plugins as a way of
optimizing your site. While this is partially true, there is much more to the story. It
all begins when deciding which plugins to install. Do some research and make an
informed decision before implementing each of your plugins. Every plugin that
you install requires resources and may decrease performance. Plugins also affect
performance in a cumulative fashion. Even so, I have seen sites running 50 or more
plugins that load very quickly. Just keep in mind that, unless you know what you
are doing, loading up on unnecessary plugins can really slow things down.

Next, once you begin installing plugins, remember to test as each one is installed.
Don’t just slap it in there and walk away – take the time to surf your site and
examine its performance with the newly installed plugin(s) installed. If you find
that they are slowing things down, reconsider your choice and search for better
options. Otherwise, do what you can to offset the reduced performance, perhaps
by caching (see Section 9.5.2 in this chapter).

Optimizing your database is a great way to improve site
performance. There are numerous ways to do so, including the
following:

• Manual SQL query - using the “OPTIMIZE TABLE” command,
it is possible to optimize any specific table or group of
tables. Use this format, replacing the example terms with
your table names:

OPTIMIZE TABLE `feeds`, `items`, `options`, `tags`

• Using phpMyAdmin - check all tables in your database and
select “Optimize” from the dropdown menu.

• Use a plugin - Joost De Valk’s Optimize DB plugin makes it
easy to optimize your database: http://digwp.com/u/369

Optimize Your WordPress Database
• Use a different plugin - Another good plugin for

optimizing and cleaning up your database is WP-Optimize
http://digwp.com/u/370. Also check out WordPress
Database Table Optimizer http://digwp.com/u/371 to
automate the optimization process.

• Use a completely different plugin - The WP DBManager
plugin http://digwp.com/u/334 also makes it easy to
optimize your database, along with a whole bunch of
other great database-management features including
automatic database backup and more.

Regardless of your method of choice, it is good practice to
optimize your database on a periodic basis to help ensure
optimal site performance.

http://digwp.com/u/369
http://digwp.com/u/370
http://digwp.com/u/371
http://digwp.com/u/334

370

Then, as you continue to take control of your plugin arsenal, keep an eye on any
that may have been useful at one time but now are useless. Uninstall any obsolete
and unused plugins immediately. Every time you load a page on your site, all of
your plugins are loaded in the background. Thus, any plugins that you can remove
from this equation will provide an immediate performance boost.

Also, as mentioned above, keep your plugins updated. Whenever you see that
a new version of the plugin is available, take the time to check it out and then
upgrade as soon as possible. Staying current with plugins is a good idea because
they usually feature improved code, tighter security, and better features.

Finally, once you decide to disable a plugin, remove it completely. Don’t leave it
sitting there in a disabled state in your Admin area. Uninstall it, and make sure that
any peripheral files that may have been related to the plugin are also removed.
Hopefully, any plugin that you decide to install will provide a complete “Uninstall”
option that cleans up after itself in the WordPress database, but if not, you may
want to go in and manually remove all traces of it.

9.5.7 Database Maintenance
If your theme is the heart of WordPress, then your database is its brain. The
database contains all of the settings, comments, posts, plugin options, and
administrative data required for your site to function properly. When this data
becomes corrupted or is poorly optimized, performance may suffer. A good
practice to get into involves optimizing and backing up your database at regular
intervals, depending on the use and scope of your site. Highly active sites should
optimize their database every day, while less-active sites may be fine optimizing
once a week or less.

You should also take every opportunity to clean up your database of unnecessary
data. For example, after installing, testing, configuring, and uninstalling plugins,
you should examine your database for any tables or options that may no longer be
necessary. If the plugin developer did their job, their plugin will include a complete
uninstall option that cleans up the database for you. Unfortunately, this is not
always the case.

Too Many Plugins?

As this book goes to press, we
are currently running a poll at
the Digging into WordPress
companion site that asks,
“How Many Plugins do You
Use?” Drop by and vote if the
poll is still open when you read
this, otherwise check in to see
the results:

http://digwp.com/u/367

http://digwp.com/u/367

371

9.5.8 Other Optimization Techniques
There are many ways to optimize your site and improve performance for your
visitors. Here are a few more ideas that are well-worth the effort.

Split long posts into multiple pages

WordPress enables you to split up long posts into individual pages using the
<!--nextpage--> tag in your posts. This trick is not for all posts, but for those super-
long articles with lots of images and stuff, it may really help to speed things up.

Limit the number of posts on archive and index pages

The idea here is to reduce the overall size of your web pages by displaying fewer
posts. Instead of, say, 20 posts on your homepage, you can use a plugin such
as Custom Query String Reloaded http://digwp.com/u/373 to limit the number of
posts that are displayed. By doing similar for other types of page views, you can
customize page size in granular fashion.

Specify far-future expires or cache-control headers

For static resources such as images, CSS and JavaScript files, a great way to decrease
load time for your regular visitors is to specify far-future “Expire Headers.” By
setting an expiration date of, say, a month for your image files, visitors’ browsers
will know not to re-fetch them, thereby reducing their load-time significantly.

Here is an example showing an HTAccess technique used for three common types
of images:

EXPIRATION HEADERS FOR IMAGES

note: 2592000 seconds = 1 month

ExpiresActive On

Cache Your Database

Improve database performance
by caching your database
queries. Check out the DB
Cache plugin to cache your
queries and speed up the
loading of your site.

http://digwp.com/u/368

http://digwp.com/u/373
http://digwp.com/u/368

372

ExpiresByType image/gif A2592000

ExpiresByType image/png A2592000

ExpiresByType image/jpg A2592000

ExpiresByType image/tif A2592000

ExpiresByType image/ico A2592000

Just keep in mind that with cache-control headers in place, you will need to change
the file name of any files that are being cached in order for them to be refreshed
in the user’s browser.

Reduce image sizes

Obviously, large images require more time to load than smaller ones. There are
millions of articles out there explaining how to optimize your images, so we
won’t reinvent the wheel here. Instead, let us point out several avenues of image
optimization that will help you determine the best approach:

• Online image optimization tools - There are many great online services
such as Smush.it http://digwp.com/u/374 or punypng http://digwp.com/u/375 that
make it easy to upload and optimize your image sizes. Best of all, these free
online services work on JPEG, GIF, and PNG images. Both services use “lossless”
compression techniques to ensure that your images do not lose any of their
original visual quality.

• Offline optimization programs - For more control over the details of
your image optimization, check out OptiPNG http://digwp.com/u/376 or
PNGcrush http://digwp.com/u/377. Either of these powerful command-line
programs will remove unnecessary data from your PNG images without
reducing image quality. Both are excellent programs that work beautifully.

• Optimization during image creation - Arguably the best way to optimize
your images is to create them optimally to begin with. There are many ways
to do this, and there are plenty of excellent articles that will help you use
programs such as Photoshop to take advantage of its image-optimization tools.

http://digwp.com/u/374
http://digwp.com/u/375
http://digwp.com/u/376
http://digwp.com/u/377

373

Hardcode database calls to improve performance

Speed things up by eliminating unnecessary calls to the database. A classic
example of this is seen in the header.php file of most WordPress themes. Here is a
typical example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" <?php language_attributes(); ?>>
 <head profile="http://gmpg.org/xfn/11">
 <meta http-equiv="Content-Type" content="<?php bloginfo('html_type'); ?>;
 charset=<?php bloginfo('charset'); ?>" />
 <title><?php wp_title('«', true, 'right'); ?><?php bloginfo('name'); ?></title>
 <link rel="stylesheet" href="<?php bloginfo('stylesheet_url'); ?>" type="text/css" />
 <link rel="pingback" href="<?php bloginfo('pingback_url'); ?>" />

If you are releasing your theme for public consumption, the database calls made
by these template tags make it easy to display the correct information on any
WordPress-powered site. For themes that do not require the convenience that
these template tags provide, however, it is possible to reduce the number of calls
made by replacing the tags with their plain-text values.

If you go through your theme files, you will see there are many of these dynamic
calls that may be replaced with static values. To help illustrate, here’s what
the previous code would look like after replacing the dynamic tags with their
corresponding, site-specific, plain-text values:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
 <head profile="http://gmpg.org/xfn/11">
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <title>Digging into WordPress</title>

374

 <link href="http://digwp.com/wp-content/themes/DiggingIntoWordpress-1/style.css"
 rel="stylesheet" type="text/css" media="screen" />
 <link rel="pingback" href="http://digwp.com/xmlrpc.php" />

Disable unused/unnecessary plugins

Plugins consume resources. Running plugins you don’t need is stupid. Go through
your list and uninstall/delete any that you no longer need. Trust us, you’ll be glad
you did.

To Infinity, and Beyond
As we have seen in this chapter, there will always be a way to improve the
performance of your WordPress-powered website. Out-of-the-box, it’s going to
work just fine for just about anything, but that is no reason to get complacent.
Even with the smallest amount of effort, it is possible to improve your existing
functionality and further optimize your current setup. From simply installing
a few caching plugins to manually implementing custom functions, your site’s
maintainability, security, and performance can be advanced as far as you are
willing to go.

375

Screenshot of WordPress-
founder Matt Mullenweg’s
personal website.

Thanks Matt.

http://ma.tt

http://ma.tt/

376

In the beginner‘s mind there are many

possibilities, but in the expert‘s there

are few.

– S H U N R Y U S U Z U K I

377

Bonus Tricks!

10.1.1 Everybody Loves Bonus Tricks
Right?! This chapter is new to the v2.0 version of this book. If you are reading this,
you have at least that version. And with v2.0, comes some bundled themes. We
needed a place to talk about some of the things you‘ll find in those themes, hence
the new chapter. Beyond that, we are going to share with you some fun tricks you
can use in any theme.

10.2.1 Add Author Bios to Single Posts
Have you ever seen
an article on a site
end with a block
like this? It can be
a nice personal
touch, especially for
multi-author sites.
WordPress has some
built-in functionality

to get it done, and there are some plugins to help as well. Let‘s go through how
you might implement this into your own site.

10

378

There are three bits of data that we need to
get our hands on here:

1. The author‘s name

2. The author‘s short bio

3. The author‘s photo

#1, getting the author‘s name, is the easiest.
There is a built in WordPress function for
displaying it:

<?php the_author() ?>

The important thing to remember here is to
set up a “Display name” that is the nicest
version of the Author‘s name possible. If you
don‘t do this, it will show the username of
the Author, which among other limitations,
doesn‘t allow spaces. In other words “Chris
Coyier” is a lot nicer than “chriscoyier” or
worse, “admin.”

#2, getting the author‘s bio, is similarly easy.
It‘s just a lesser-known WordPress function:

<?php the_author_description(); ?>

This biography information you can add directly to any user from the Admin area.
Just edit the user, type in their bio, and save.

#3, getting the author‘s photo, is slightly trickier. There are a few different routes
you can take.

379

Display Author Gravatar

Your authors might already have Gravatars (Globally Recognized
Avatars, http://gravatar.com/). Gravatars are the most common way to
handle user thumbnails in the WordPress world. The vast majority of
themes support them in the comments area, so it can make sense to use
it for author photos as well. This also puts the control of that photo in
the author‘s hands.

You can use the following code to display the Gravatar of the author of
the current post. Use this within the Loop:

$gravatar_link = 'http://www.gravatar.com/avatar/' .

 md5(get_the_author_meta('user_email')) . '?s=32';

echo '';

User Photo Plugin

Perhaps your site‘s design calls for author photos, but Gravatars aren‘t
a good solution. Like you want to have a consistent style for all of them
and leave that control up to you instead of your authors. Or, your authors already
have Gravatars that they don‘t want to use for this purpose.

With the User Photo plugin http://digwp.com/u/436, you can bring author photo
control into WordPress. With the plugin active, each user‘s profile in the Admin has
a new area for uploading a photo for them.

The plugin then
gives you some new
functions to use for
outputting the photo
in your theme. See
the documentation.

380

10.3.1 Adding a Theme Options Panel
Both of the themes that are now bundled with this book feature theme options
panels. Theme options panels are trendy right now, and some themes cross the
line of providing functionality that should probably be left to plugins. However,
in general, theme options panels are a great way to extend the functionality of a
theme. They can make the theme easier to customize should the theme be for sale
or control ultimately given to a client, easier for beginners to change things, and
even easier for yourself to pop in and change things from an easy interface rather
than wrangling code.

What is a theme options panel?
It is a new option that shows up
in the WordPress Admin menus.
Clicking it takes you to the theme
options panel, where a variety
of options are available. What
options? Could be anything. Text
boxes to control areas of text in
your theme. Dropdowns to select
behavioral options, Checkboxes...
you name it. It is completely up to
the theme author of what to offer
here and how those options affect
the theme.

Both of the bundled themes not
only come with a theme options
panel, but it is built in such a
way that it is almost like a theme
options framework. In other words,
adding your own new options or
altering the existing ones is
fairly easy.

381

Theme options panels are built with code that lives in the functions.php file of a
theme. This code is responsible for a lot:

• Add the menu option and options page to the admin

• Make the values properly save to the database, with proper user feedback

• Make it easy to add additional options

Then once that is all in place, the theme should be able to access those options
easily. Let‘s take a look at the functions we will need at the most stripped
down level.

<?php

 $themename = "My Theme Name";

 $shortname = "mytheme";

 $options = array (

 // Array variable to define all the options we'll need

);

 function mytheme_add_admin() {

 global $themename, $shortname, $options;

 // Code responsible for saving, updating, and deleting theme
options goes here

 add_theme_page($themename." Options", "".$themename." Options",
'edit_themes', basename(__FILE__), 'mytheme_admin');

 }

 function mytheme_admin() {

382

 global $themename, $shortname, $options;

 // User feedback for saving, etc, goes here

 ?>

 <!-- HTML goes here for displaying the theme options panel -->

<?php }

 // Kick it all off!

 add_action('admin_menu', 'mytheme_add_admin');

?>

The above code is very stripped down, it is just meant to show you the very basics
and the different functions necessary for getting this started. Now we need to
think about the different form elements that an options panel might have:

• Text inputs

• Textareas

• Dropdowns

• Checkboxes

What about radio boxes? We could do that… but if you think about it, dropdowns
are essentially the same thing, just slightly different user interface. So let‘s leave
them out for now. In the $options variable that we set up, we‘ll specify some basic
information about the them. Then we‘ll list each different option that we want,
referencing the title, helper text, a unique ID for it, and what type of input it is.

$options = array (

 array("name" => $themename . " Options",

 "type" => "title"),

383

 array("type" => "open"),

 array("name" => "Site Title Override",

 "desc" => "This name will show in the sites header, but not the
actual page <title>",

 "id" => $shortname."_title_override",

 "std" => "",

 "type" => "text"),

 array("name" => "Footer Text",

 "desc" => "This text will display in the footer of your site",

 "id" => $shortname . "_footer_text",

 "type" => "textarea"),

 array("type" => "close")

);

It may look a little complicated, but this part is the really smart part! Down the
road, adding new theme options will be just a matter of adding an additional
chunk of code just like to see above specifying its name, ID, etc. The rest of the
code will be smart enough to see that, add in the HTML needed for the theme
options panel, as well as do all the database saving and such needed.

So now that we‘ve made it this far, I‘m going to disappoint you by telling you that
to see the rest of all this code, you‘ll have to crack open the functions.php file of
your active theme. It‘s not that it doesn‘t belong in this book or that it‘s overly
complicated – it does belong and it‘s not that complicated. It‘s just that it‘s a few
hundred lines of code and we thought we‘d save a tree! It means more when you
are looking at the real code in a real code editor anyway.

384

10.4.1 Free WP Theme: Lines & Boxes
Have you ever drawn up wireframes for a website and then thought “this website
looks good just like this”? That was the inspiration behind Lines & Boxes. It can be
used as-is, as an extremely simple let‘s-focus-on-the-content kind of theme. Or, it
can be used as a “blank” style theme, a theme with enough styling in place where
it makes customizing it an easier process.

385

10.4.2 Child Themes
The idea behind a child theme is that it uses all the theme files from a different
theme (the “parent” theme), but uses the style.css and functions.php file from
itself. This is particularly useful if, for example, you are using a WordPress theme
framework. The framework releases updates to everyone using it. If you had that
theme completely customized, upgrading would be difficult. If instead you used a
child theme and kept your customizations to that, you could simply over-write the
parent theme (the framework) with the new version and (probably) be fine.

The other golden opportunity for child themes is making variations upon a base
theme. That is exactly what we have done with Lines & Boxes. The original Lines &
Boxes is a black-on-white theme. The background is light, the content and “lines”
are dark. To illustrate the idea of child themes and variations upon themes, we
provided a child theme called “Lines & Boxes (dark)” which is an inverse-color
theme (light on dark).

Creating the child theme was almost trivially easy. We just created a new folder for
the theme. Put inside it a style.css file (and an images folder as we needed one
new image). The style.css file does all the talking:

/*
Theme Name: Lines and Boxes (Dark)
Theme URI: http://digwp.com/
Description: Child Theme for Lines and Boxes
Author: Chris Coyier
Author URI: http://chriscoyier.net/
Template: Lines-and-Boxes
*/

@import url("../Lines-and-Boxes/style.css");
/* Overwrite CSS rules here */
body { background-color: #333; color: #eee; }
/* Reverse out colors for other things... */

386

10.4.3 AJAXing a Theme (“All AJAX” Free Theme)
Also included with this book is a theme called “All AJAX” this is based on Lines &
Boxes. It is highly experimental at this point, we just thought it was a fun idea and
wanted to provide it as a starting point for you ambitious folks.

The idea is that loading content into an area on a page is trivially easy with jQuery:

$("#main-content").load("/contact/ #inside");

That tiny bit of code right there would find the element with the ID of main-
content, load the contact page of your site, find the element with an ID of inside
and grab that content, and chuck it into the main-content element.

In the “All AJAX” theme, that is exactly what we leverage. First it looks for all
“internal” links (links to outside websites are ignored). When an internal link is
clicked, it goes and grabs the content from that URL and replaces the main content
area. This way you can click around the entire site never seeing a single page
refresh. Even search!

Again, instead of dropping a ton of code here in the book, we encourage you to
go view the code in the theme itself. You can see the JavaScript that powers it in
the /js/allajax.js file inside the theme folder itself.

Other features:

• Makes all internal links hash-tag links. This means you can click on links and it
does change the URL, e.g., http://your-site.com/#/contact/. The theme then
supports “deep-linking”, in other words, that URL when loaded for the first
time will load the contact page properly.

• Search is AJAXed as well.

• Current page highlighting in all navigation is present, using the same .current_
page_item class that WordPress uses by default.

387

10.5.1 Free WP Theme: Plastique
“Plastique” is one of the new themes that we are
including with this update of Digging into WordPress.
The idea is to use the bundled themes as vehicles for
sharing some of the awesome things you can do when
designing your own. Let’s check out some of the cool
things that you can do with the Plastique theme.

Layout Options, Widgets, & Custom Content

The Plastique theme enables you to completely
customize the look, feel and functionality of your site.
Choose from a number of layout options including:

• Single-column, fixed-width

• Two-columns, fixed-width, left sidebar

• Two-columns, fixed-width, right sidebar

• Three-columns, fixed-width, left and right sidebars
(shown in screenshot at right)

Each layout is fully equipped with a wide variety of
“widgetized” areas that may be used to include virtually
any type of widgetized functionality imaginable.
Widgetized areas include the following:

• Four header panels

• Left and right sidebars

• Before and after posts

• Before comments

• Three footer panels

Default color-scheme of the Plastique theme

Alternate color and styles applied via B&W child theme

388

Plus several other widgetized areas that are exclusive to particular layout options.
In addition to the layout options and widget functionality, Plastique also includes
a multitude of custom-content areas throughout the design. These custom-content
areas enable you to include virtually any content or markup into these locations:

• The <head> section

• Header area, including custom list items

• After-header area

• Center column

• Left and right sidebars

• Footer area, multiple options

• Before closing </body> tag

Additionally, each of these different custom-content areas and widgetized areas
may be toggled on or off in the Admin area, enabling you to display or hide
anything you wish. Everything is completely customizable via the Admin area.

Full Admin Control

All of the layout and custom-
content options are easily
controlled via the “Plastique
Options” screen in the Admin.

Choose Your Widgets

To customize any of
Plastique's many widgetized
areas, visit the “Widgets”
screen from the “Appearance”
submenu.

Detail view of the Plastique Options page, where you have full control over number of layout columns, menu items,
custom content, header & footer layout, and everything else.

389

Child Themes, Category Styles, and Other Features

Out of the box, Plastique includes category-specific post styles, including
unique “mini themes” for each different category of post. These post-
specific styles feature the category name displayed in the post header and
color coordinated link, border, and background styles.

Of course, Plastique’s default pastel color scheme may not be for everyone,
so we have made it relatively easy to change things up by emulating the
included Child Theme. Plastique’s Black-&-White Child theme includes
everything you need to customize the appearance by specifying your own
CSS styles. The B&W Child theme may be either used as is, or used as a
template through which to implement your own custom styles.

The Plastique theme also features some slick comment styles, which by
default includes support for “two-level” deep threaded comments. This
is one of our favorite parts of Plastique’s design, and is demonstrated for
quick reference at our Theme Clubhouse: http://digwp.com/u/437

Other Plastique features include:

• Automatic inclusion of the category ID included for each post and page view via
the post_class and body_class template tags

• Automatic inclusion of WordPress’ various feed links in the
<head> section

• Smart inclusion of jQuery via wp_register_script and wp_enqueue_script

Plastique Theme Includes the Category Posts Widget

In addition to the many default widgets included with WordPress, the Plastique theme includes the
James Lao’s excellent Category Posts Widget http://digwp.com/u/434. The Category Posts Widget
makes it easy to display the most recent posts from a certain category anywhere within your theme.
The widget includes plenty of great features, including optional display of comment count, post
date, post excerpt, post thumbnails, and more. To use the Category Posts Widget, simply drag &
drop it into any of Plastique’s widgetized areas and customize the options to suit your needs.

Custom Widget Styles

WordPress’ default widgets
have been pre-styled with
matching colors and fonts for
the Plastique theme. These
custom styles may be easily
overridden using a child theme.

http://digwp.com/u/434

390

Do not go where the path may lead, go

instead where there is no path and leave

a trail.

– R A L P H W A L D O E M E R S O N

391

WordPress 2.9 Update

11.1.1 Like a River...
WordPress is likely the most coordinated, focused, and fast-moving open source
project on the planet. When bugs in WordPress are found, the community and
core development team are usually quickly on the case and push patches out to
take care of it. But WordPress releases aren’t just bug patches. The “point releases”
(e.g., from 2.8 to 2.9) typically represent significant changes.

These changes could be new functions available for theme builders, changes
to how those functions work or what they return, aesthetic or functionality
improvements to the Admin area, etc. And it’s not always “add, add, add.”
New versions sometimes simplify pre-existing things, which is the mark of truly
great software.

Frequent updates make writing books about this software challenging. Fortunately,
you made the right choice as this book will be continually updated to document
those changes.

11.2.1 New in WordPress 2.9
WordPress 2.9 was a fairly major release for WordPress, and brings with it a good
number of new backend functions, as well as Admin area functions. WordPress
users now enjoy a built-in image editor, undo/trash functionality, batch-updating
of plugins, dead-simple video embedding, and tons more. Let’s explore these great
new features to help you get the most out of the latest version of WordPress.

11

392

11.2.2 Image Editor
WordPress’ Media Library now features basic image editing. This is a real time-saver
for users who need to make simple changes such as rotation, scaling, flipping, and
cropping. To facilitate the editing process, the Media Library also includes “undo”
and “redo” functionality, aspect-ratio adjustments, pixel-coordinate information,
and optional bulk editing of all thumbnails.

How to use:

1. Go to the Media Library and click on “Add New” at the top of the screen

2. In the Upload New Media screen, select and upload your image

3. Next to the thumbnail of your image, click the “Edit image” button

4. Use the tools in the Image Editor to fix up your image

393

11.2.3 Trash Can
The new “Trash Can” is similar in functionality to Mac’s “Trash” and Window’s
“Recycle Bin,” and serves as an intermediate safety net between your content
and final deletion. Instead of simply deleting a post, page, draft – whatever – you
now send it to the Trash Can, where it will remain until restoration or deletion,
whichever happens first. This new “trash” functionality applies to anything that
can be deleted, including posts, pages, attachments, comments, drafts, and so on.

By default, WordPress empties the Trash Can every 30 days. During this time, users
may restore any trashed items or delete them permanently. If 30 days is not an
ideal time period, modify it with the following code in your wp-config.php file:

define('EMPTY_TRASH_DAYS', 10); // empty trash every 10 days

Simply edit the “10” with the desired number of days and you’re good to go. If you
would rather not have to deal with the whole Trash Can scene, use this instead:

define('EMPTY_TRASH_DAYS', 0); // disable trash can feature

How to use:

To view the contents of the Trash Can, go to the Edit Posts screen and click on
the “Trash” link. If you would like to restore an item, click on its corresponding
“Restore” link. Multiple items may be restored easily via the bulk restore options.

394

11.2.4 Embedding Videos with oEmbed
WordPress now makes it super-easy to embed video content in your posts. Before
version 2.9, embedding video required users to format and include a customized
slab of markup, which would require different parameters and settings depending
on different types of video formats. Now, all that’s needed is inclusion of the video
URL in the post. Amazingly simple.

WordPress makes this possible by using the oEmbed (http://www.oembed.com/)API,
which enables embedded video content on third-party sites. Of course, auto-
embedding requires that the original video content is hosted on a site that
supports oEmbed functionality.

Once you publish your video post, WordPress checks the video site for the required
oEmbed auto-discovery code. If it’s found, WordPress automatically converts the
video URL into the required embed code.

By default, oEmbed is enabled. To disable oEmbed functionality, go to Settings >
Media and uncheck “Attempt to automatically embed all plain text URLs”.

How to use:

1. Create a new post

2. Get the URL of your video

3. Paste your video URL on its own line

4. Publish your post

If you need to include other content on the same line as the video URL, wrap the
URL in an [embed] shortcode:

[embed]http://www.youtube.com/watch?v=Ms3QdGIzltU[/embed]

WordPress will automatically embed the video specified using this format.

http://oEmbed.com/

395

Supported Video Sites

By default, for security purposes, WordPress will only embed URLs that match a
built-in whitelist. Here are the currently supported sites:

• YouTube

• Vimeo

• DailyMotion

• blip.tv

• Viddler

• Hulu

• Qik

• Revision3

• Scribd

• Photobucket

• PollDaddy

• Google Video

• Flickr (both videos and images)

• WordPress.tv (currently works for only VideoPress-type videos)

For information on including additional websites to the oEmbed whitelist, see the
official “Embeds” documentation at the WordPress Codex: http://digwp.com/u/426

Enable or Disable Auto-Embedding for Videos

You have full control over whether or not you would like WordPress to automatically
embed your videos. Just go to “Settings > Media” and check or uncheck the box.

http://www.youtube.com/
http://vimeo.com/
http://www.dailymotion.com/
http://blip.tv/
http://www.viddler.com/
http://www.hulu.com/
http://qik.com/
http://revision3.com/
http://www.scribd.com/
http://photobucket.com/
http://www.polldaddy.com/
http://video.google.com/
http://www.flickr.com/
http://wordpress.tv/
http://videopress.com/
http://digwp.com/u/426

396

11.2.5 Database Maintenance Tools
WordPress 2.9 makes it easier to optimize and repair your MySQL database from
within the Admin area. This is especially useful for users who aren’t already using
some sort of a database-management plugin such as the excellent WP Database
Manager (http://digwp.com/u/443). By including the following directive in your
configuration file (wp-config.php), you will have access to WordPress’ new built-in
database tools:

define('WP_ALLOW_REPAIR', true); // enable database tools

Once this code is in place, log in to the Admin area and visit this URL:

http://domain.tld/wp-admin/maint/repair.php

There you will find options for repairing and optimizing your WordPress database.

Once you have finished with the database tools, it is recommended that you
remove the definition from your wp-config.php file to prevent unauthorized access
and usage. A simple way of doing this is to “comment out” the code like so:

// define('WP_ALLOW_REPAIR', true); // enable database tools

http://digwp.com/u/427
http://digwp.com/u/427

397

11.2.6 Canonical Meta Tags
Some of the big SEO news of 2009 was support of a new “canonical” meta tag
by the major search engines (Google, Bing, and Yahoo!, among others). This new
canonical tag is designed to help reduce duplicate content and help search engines
differentiate between original and derivative web pages. To support this new
functionality, WordPress now includes the following meta tag in the <head> section
of your single posts and pages:

<link rel="canonical" href="http://domain.tld/single-post-or-page/" />

The href value will then change according to the URL of the current post or page.
The presence of this tag in the <head> of your pages says to the search engines,
“hey, this is the original, canonical web page for this content.” This helps search
engines sort through the many different types of derivative and/or duplicate
content and give proper credit where it’s due.

How to use:

If the wp_head() hook is present in your theme’s header.php template, WordPress
automatically includes canonical tags on your single posts and pages. If you would
like to disable the canonical-tag feature, simply add this code to your theme’s
functions.php file:

remove_action('wp_head', 'rel_canonical'); // disable canonical tags

Canonical Tags for Previous Versions of WordPress

To implement canonical tags in previous versions of WordPress, simply add the following slice of
code to the <head> section of your theme’s header.php file:

<?php if (is_singular()) echo '<link rel="canonical" href="'.get_permalink().'" />'; ?>

This will add the rel="canonical" tag to all of your single posts and pages.

Learn More...

For more information on
rel="canonical" and duplicate
content, see Chapter 8.2.5.

398

11.2.7 Post Thumbnails
A much-anticipated feature is WordPress’ new post-thumbnail functionality.
Adding post-specific thumbnails has always been possible using custom fields, but
now the the_post_thumbnail template tag simplifies the process. Here is an example
of how the tag is used in your theme files:

<?php while(have_posts()) : the_post(); ?>

 <h1><a href="<?php the_permalink(); ?>"><?php the_title(); ?></h1>

 <?php the_post_thumbnail(); ?>

 <?php the_content(); ?>

<?php endif; ?>

With this code in place, each post will display its associated post thumbnail (if
available) as specified via the WordPress Admin during the creation of a post. Once
post-thumbnail functionality is activated on your site, the Write/Edit-Post screen
will display a “Post Thumbnail” panel that will enable you to assign a thumbnail
for that particular post.

How to activate/use:

1. Activate post-thumbnail functionality by adding the following code to your
 theme's functions.php file:

if (function_exists('add_theme_support')) { add_theme_support('post-thumbnails'); }

2. Go to the Write/Edit-Post screen and click the “Set Thumbnail” link in the “Post
 Thumbnail” panel:

399

3. Once the media panel opens, go to the “Media Library” tab and select your
 thumbnail image:

4. After selecting the thumbnail image, click the “Use as Thumbnail” link next to
 the “Insert into Post” button:

5. That’s it. Your selected image should now appear in the Post Thumbnail panel
 and may be displayed in your theme files by using any of the following tags in
 the post loop:

<?php has_post_thumbnail(); ?>

400

<?php the_post_thumbnail(); ?>

<?php get_post_thumbnail_id(); ?>

<?php get_the_post_thumbnail(); ?>

You may also specify the size of the displayed thumbnail as follows:

<?php the_post_thumbnail('thumbnail'); ?>

<?php the_post_thumbnail('medium'); ?>

<?php the_post_thumbnail('large'); ?>

If no size parameter is specified, your default thumbnail size is used. You may also
specify sizes explicitly via your functions.php file:

set_post_thumbnail_size(50, 50); // 50px resized thumbnails

set_post_thumbnail_size(50, 50, true); // 50px cropped thumbnails

You can also specify custom thumbnail sizes as follows:

add_image_size('custom-thumbnail', 500, 500); // custom 500px thumbnail

...which would then be included in your theme loop like so:

<?php the_post_thumbnail('custom-thumbnail'); ?>

To style your thumbnail images, you may either use the provided CSS class:

.wp-post-image {}

...or else add your own:

<?php the_post_thumbnail(array('class'=>'my-custom-class')); ?>

401

In addition to these customizations, there is much more that may be done with
post thumbnail functionality. Here are some examples..

Override default thumbnail dimensions (in pixels):

<?php the_post_thumbnail(array(250,250)); ?>

Specify additional image attributes (class, title, alt):

<?php the_post_thumbnail('medium', array('class'=>'custom-class',
'alt'=>'custom-alt', 'title'=>'custom-title')); ?>

We can also ensure backwards compatibility for older versions of WordPress by
wrapping the functions.php code in a conditional check:

if (function_exists('add_theme_support')) { // as of WP 2.9

 add_theme_support('post-thumbnails'); // activate thumbnails

 set_post_thumbnail_size(50, 50, true); // specify thumbnail size

 add_image_size('custom-thumbnail', 500, 500); // custom thumbnail size

}

...and then we’ll also want to wrap the template code in a conditional check:

if ((function_exists('has_post_thumbnail')) && (has_post_thumbnail())) {

 the_post_thumbnail();

} else {

 $postimageURL = get_post_meta($post->ID, 'post-image', true);

 if ($postimageURL) {

 echo ''; } }

402

More information on post thumbnails:
Mark Jaquith - New in WordPress 2.9: Post Thumbnail Images - http://digwp.com/u/438

WP Engineer - The Ultimative Guide For the_post_thumbnail In WordPress 2.9 - http://digwp.com/u/494

Justin Tadlock - Everything you need to know about the post image feature - http://digwp.com/u/440

11.2.8 Metadata API
WordPress 2.9 features a new Metadata API that eliminates redundancy and makes
it easier to retrieve data from meta tables in the database. The add_metadata()
function accepts the following parameters:

add_metadata($meta_type, $object_id, $meta_key, $meta_value, $unique);

This enables us to access just about any piece of data in the database and display
it within our posts and comments. For examples, displaying a specific user’s email
address is as easy as this:

add_metadata('user', 123, 'email', 'user@domain.tld');

Related functions include the following:

update_metadata()

delete_metadata()

get_metadata()

update_meta_cache()

Learn More...

The new Metadata API
functionality is fully
documented in the core at wp-
includes/meta.php.

http://digwp.com/u/428
http://digwp.com/u/429
http://digwp.com/u/494
http://digwp.com/u/430

403

11.2.9 Widgetized Sidebar Descriptions
This is a great new feature for theme designers that enables the addition of a
custom description for each widgetized area. This makes it much easier for users
to determine the location and purpose of the different widgetized areas present
within a theme. All that’s needed is an additional “description” argument placed
within the register_sidebar() function:

if (function_exists('register_sidebar')) {

 register_sidebar(array(

 'name' => 'Custom Sidebar',

 'id' => 'custom',

 'description' => 'Custom Sidebar Description',

 'before_widget' => '<li id="%1$s" class="widget %2$s">',

 'after_widget' => '',

 'before_title' => '<h2 class="widgettitle">',

 'after_title' => '</h2>',

));

}

Just change the “description” argument to whatever you would like. It’s that easy.

11.2.10 Custom Post Types
WordPress now makes it easier for designers and developers to create custom post
types. Up until WordPress 2.9, using anything other than the default four post
types – “post”, “page”, “revision”, and “attachment” – was quite a chore requiring
custom code and much understanding.

404

With the ability to register custom post types, WordPress opens the doors to easier
post formatting, better content structuring, and greater design flexibility. While
there is no user-interface for custom post types in WordPress 2.9, there are plans
for better integration in version 3.0.

Even without an Admin interface, theme designers and plugin developers may
create custom post types and integrate them into themes using the get_post_
type() function, which returns the “type” of post when used within the loop.
There is also the get_post_types() function, which returns a list of all “types”
of posts.

To create a custom post type, we have the register_post_type() function, which
defines the name of the custom post type in the first argument. The second
parameter is an array that specifies additional parameters. See the Codex for more
information: http://digwp.com/u/441

11.2.11 New Theme Templates
As avid theme designers, one of our favorite new WordPress features is the
enhanced custom-template functionality. WordPress now makes it much easier to
create custom theme templates based on slug information. Now we can do custom
templates using files named with the following syntax:

• category-slug

• page-slug

• tag-slug

These are in addition to these existing formats:

• category-id

• page-id

• tag-id

Learn More...

See Chapter 12.2.8 for more
information on WordPress’
new custom-post (aka custom-
content) types.

405

To use, simply append the slug name to the end of the tag, page, or category
filename and that template will be used to display the output for that particular
set of posts. So for example, if a custom template named “category-hamsters.php”
will be used to display all of the posts from the category with the “hamsters” slug.

11.2.12 Register Feature Support
This new feature is good news for plugin developers, who may now declare
support for an existing feature by adding the add_theme_support() function to the
theme’s functions.php file. Here is an example using WordPress new post_thumbnail
functionality:

add_theme_support('post-thumbnails');

Additional functionality may be included via the require_if_theme_supports() tag:

require_if_theme_supports('custom-feature', '/path/to/custom-feature-
library.php');

Once a new feature has been declared, theme support is implemented with the
following code via functions.php:

if (function_exists('add_theme_support')) { add_theme_support('custom-
feature'); }

Notice that we provide additional protection by checking (via function_exists())
for support of the add_theme_support() function. This is good practice for
backwards-compatibility.

Learn More...

See Chapter 11.1.6 for more
information on WordPress’
new post-thumbnail feature.

406

11.2.13 Custom Theme Directories
WordPress 2.9 also features the ability to register custom theme directories. By
default, the theme directory is located at “/wp-content/themes/”. To specify an
alternate theme directory, such as one at “/wp-content/alt-themes/”, we use
the new register_theme_directory function and specify the custom theme path
(relative to the wp-content directory):

<?php register_theme_directory('alt-themes'); ?>

With this code in your functions.php file, WordPress will register your custom
theme directory and scan it for any available themes. Any themes that are
discovered will be presented in the WordPress Admin’s “Presentation” screen.

This useful new feature enables plugin developers to automatically add themes
without any action by the user. Another potential use for custom theme directories
involves sharing themes among different installations of WordPress.

11.2.14 Other Cool Changes in WordPress 2.9
Most of this stuff is good news especially for developers, but it’s also good for users
to understand some of WordPress’ new potential and possibilities.

• Application Upgrades - TinyMCE and SimplePie have been upgraded for better
performance.

• Batch Plugin Updates - You can now check compatibility and update multiple
plugins at the same time.

• New Excerpt Filters - Two new filters enable you to change the default text and
length of excerpts.

• User Registration - User Profiles and Registration now may be filtered to collect
additional user information.

407

• Enhancements to $wp_query - Now returns more than one post type, for
example all posts and pages.

• Widgets Anywhere - Widgets may now be called anywhere thanks to the new
widget functionality.

• New sanitization API - New tools available for cleaning and sanitizing code
using functions such as esc_html().

• Custom taxonomies - Custom taxonomies are now included in the WXR export
file and imported correctly.

• Extended XML-RPC API - User registration is now possible using an XML-RPC
client.

• Increased MySQL Requirements - The minimum version of MySQL required for
WordPress is increased from 4.0 to 4.1.2.

• Improved “Press This” - The Press This bookmarklet is improved and better than
ever.

• Better Hooks and Filters - Better hooks and filters for excerpts, smilies, HTTP
requests, user profiles, author links, taxonomies, SSL support, tag clouds, query_
posts and WP_Query.

Of course, WordPress 2.9 included many more updates, changes, fixes and patches.
For a complete list, check out the Codex: http://digwp.com/u/442

408408

Don’t try and reinvent the wheel –

just work on making it better than

anyone else.

– D A V I D A . S T U E B E

409409

WordPress 3.0 Update

12.1.1 Giant Leap Forward...
One thing that people love about WordPress are all of the awesome new features
rolled out with each new version, and WordPress 3.0 is no exception. WordPress has
come a long, long way since it was first introduced way back in May 2003, and the
newly released version 3.0 takes WordPress’ powerful functionality further than
ever before. A giant leap forward, without a doubt.

WordPress 3.0’s new features are all about customization and better Content
Management System (CMS) capabilities, including awesome stuff like new default
themes, MultiSite options, custom post-types, and custom everything else. Whether
you need a simple blog or an elaborate CMS, WordPress is the perfect solution.

Let’s check out some of the latest and greatest new features, and learn how to use
them to improve your site’s quality, appearance and functionality.

12.2.1 New in WordPress 3.0
WordPress 3.0 was a major release for WordPress, bringing with it some major
behind-the-scenes functionality that improves its content-management capabilities.
WordPress users now enjoy custom everything, including the ability to control and
customize content types, menus, taxonomies, and even multiple sites from the
comfort of the WordPress Admin. While everyone will appreciate the new default
theme, many designers may miss some of the underlying changes that make WP 3.0
an awesome blogging platform and an even more powerful CMS.

12

410410

12.2.2 Goodbye Kubrick, Hello TwentyTen
With version 3.0, WordPress comes bundled with a new default theme. Dubbed
“TwentyTen” (think: 2010), the new WordPress theme is inspired by Ian Stewart of
Thematic and is packed with features:

• Two-column layout with widgetized sidebar and footer

• Fresh horizontal dropdown menu system

• Clean typography via Georgia/sans-serif fonts

• Custom background images (with tiling support)

• Custom header image via post-thumbnail functionality

• Built-in Support for microformats

• Strong(er) focus on SEO

Overall, TwentyTen looks like a solid, well-built theme. The design may not appeal
to everyone’s tastes, but it’s definitely a step up from ol’ Kubrick. Check out
the new TwentyTen theme in action after installing WordPress 3.0 (click on the
Appearance tab in the left sidebar menu). To customize, visit the links shown in the
upper-left screenshot (Widgets, Menus, Backgrounds, and Header options).

TwentyTen

New in WordPress 3 – New
Default Theme: TwentyTen!

Customize It!

TwentyTen is easily
customizable using the
Widgets, Menus, Background,
and Header options.

411411

12.2.3 Goodbye “admin”, Hello Custom Username
Much has been said concerning the default admin username, “admin”, that
automatically is chosen for you when installing WordPress. Now with WordPress
3.0, users are no longer required to jump through hoops to specify their own
Admin username. A welcome change that benefits everyone.

This new custom-username feature is a huge timesaver for WordPress
administrators. When setting up WordPress, you can now choose your own
username during the installation process, and then change the randomly
generated password to something both secure and memorable.

12.2.4 Custom Background Support
WordPress 3.0 also features support for custom background images. Any theme
that includes the wp_head template-tag will work, but you need to actually enable
the custom-background functionality by including the following line of code
anywhere within your theme’s functions.php file:

add_custom_background();

412412

Once this code is in place, navigate to your Admin’s Appearance menu and click on
Custom Background. There you will find options for positioning, repeating, and if
needed, deleting your custom background image.

How does it work? After you have specified your background options in the WP
Admin, WordPress generates the CSS rules required to display the background
image and outputs the code into your theme’s <head> section. Here is the CSS code
that was generated for our custom background-image on our test WP installation:

Custom Backgrounds

New in WordPress 3 –
Customize the default theme
and other supportive themes
with a background image.

413413

<style type="text/css">

 body {

 background-image: url('http://digwp.com/bg.jpg');

 background-repeat: no-repeat;

 background-position: top center;

 background-attachment: fixed;

 }

</style>

Although they are not required for custom-background functionality to work on
your site, these parameters each reference a custom callback function, which you
can define according to your specific needs:

header_callback

 The header_callback function generates the CSS and outputs it to the web page.
Although it accepts no parameters, it does support the get_background_image()
and get_background_color() functions for additional control.

admin_header_callback

 The admin_header_callback function customizes options for the “Custom
Background” admin page (under Appearance > Custom Background).

admin_image_div_callback

 The admin_image_div_callback function also modifies the “Custom Background”
settings page in the WP Admin.

For more information on using these custom callback functions, check out Otto on
WordPress for a great post: http://digwp.com/u/454.

The take-home message for custom-background support is that WordPress now
makes it easy to use your favorite background image for your site. Free and easy!

Search not Scan

When viewing your source code, this CSS snippet
(and most of the other WP-generated code discussed
in this book) won’t have this idealized formatting.
Auto-generated source code usually ends up splattered
all over the place. So instead of wasting time scanning
through scrambled markup, use your broswer’s Find
feature to search for identifiable portions of code.

414414

12.2.5 WordPress MultiSite:
The Merging of WordPress with WPMU
Up until version 3.0, WordPress was a single-site platform. Users desiring to setup
and run multiple sites were required to use WordPress MU, which enables multi-
user (multi-tenant) installations with multiple sites all under one roof. WordPress
MU has never been as extensible or widely supported as WordPress itself, so the
news that it is merging with the WP core is excellent news for users managing
multiple WordPress sites.

WordPress’ new MultiSite functionality is not enabled by default, so single-site
users will experience the same 5-minute installation process as before. You can
check out the new MultiSite settings in the WP Admin under Tools > Network.

To enable MultiSite, you need to add the following line of code to your site’s wp-
config.php file (just above the line that says, “That’s all, stop editing!”):

define('WP_ALLOW_MULTISITE', true);

After uploading your updated config.php file to
the server, a new link will appear in the WP Admin
under the Tools menu. Clicking on that link will
take you to the “Create a Network” page, where
you’ll define a few options and create a network.

WordPress MU

WPMU enables the running
of “hundreds of thousands
of blogs with a single install
of WordPress.” Indeed,
WordPress.com uses WPMU
to serve “tens of millions of
hits on millions of blogs each
day.” Awesomely enough, this
same MultiSite functionality is
now built into WordPress 3.0.

http://mu.wordpress.org/

Network Link

After defining MultiSite in the
wp-config.php file, you will see
a new “Network” link under
the Tools Menu, like this:

Clicking on the Network link in the Tools menu loads the
network setup/installation page. It should look like this:

Complete Details

If you're planning on using MultiSite,
this section of the book will show
the basics, but you should also read
through the Network page at the Codex
for a more comprehensive walkthrough.

http://digwp.com/u/485

http://digwp.com/u/485

415415

On the network setup page, first decide if you want your network sites to use sub-
domains or sub-directories, as seen here:

Unless you have reason to do otherwise, choose the “Sub-directories” option, and
then proceed to the next section to fill in your Network Details:

Top-Level Domains

Instead of using subdomains
or subdirectories for your
multiple sites, it’s possible to
use top-level domains:

http://digwp.com/u/482

Using Subdomains...

...is quite a bit trickier than
using subdirectories. Visit the
WordPress Codex to chew
through all the gory details:

http://digwp.com/u/484

http://digwp.com/u/482
http://digwp.com/u/484

416416

Very straightforward so far. Once you enter your Network Title and Admin Email
Address, click the “Install” button to create the network! As soon as it’s complete,
you’ll see the “Enabling the Network” page:

This page displays two chunks of code: one goes into your site’s wp-config.php file,
and the other goes into your root .htaccess file. Remember to backup your files
before making any changes. Also note that these two chunks of code will always
be available under Tools > Network for future reference.

Welcome, Super Admin!

After updating your wp-config.php and .htaccess files, everything is setup and ready
to rock. You are now “Super Admin,” and have ultimate control over every site
in your network. The first thing you will notice is your shiny new “Super Admin”
menu panel, which contains options for virtually everything in your network.

Adding a New Site to the Network

To add a new site to the network, click on the Sites link in the Super-Admin menu.
At the top of the Sites page there is a list of all your network sites. Beneath the site
list is the “Add Site” form, through which you will enter the address (sub-directory)
of your new site, as well as a site title and admin email. It looks similar to this:

Super Menu!

The Super Admin menu
appears after updating your
wp-config.php and .htaccess
files. It contains everything you
need to manage your network.

417417

The beauty of using WordPress MultiSite for your
network is that everything runs from a single
installation of WordPress: one database and one set of
files. Just pick a Site Address when adding a site and
WordPress takes care of everything else. No need to
create a directory or edit any files.

Each new site added to the network includes its own
unique Admin area and Default User, which is named
according to the site address. In our example, we
created a new site in a sub-directory called “wordpress-
forum,” so the default username for that site is
“wordpress-forum.”

To manage and add users for your new site (or any site
in the network), click on the “Users” link in the Super
Admin menu (see screenshot to the right).

Add New Sites

The “Add Site” section of the
“Sites” page enables you to
easily create new sites in
the network.

Add New Users

The “Users” p age displays
all network users and enables
you to easily add new users.

418418

Full Control Over Everything

On the surface, using WordPress to create and manage a network is relatively
straightforward. But as the Super Admin there are many, many options and
settings available to you. The default MultiSite settings should work well for most
setups, and you can rest easy knowing that you can modify things as needed.

The good news is that all of your network settings are available through the Super
Admin menu panel located at the top of the left sidebar (see screenshot). Here is
an overview of what you will find under each options page:

• Admin - Provides a quick summary of sites and users, and enables you to search
either users or sites. Also provides shortcuts to create new sites and users.

• Sites - Displays all sites in your network along with basic details such as default
user, site paths, site IDs, and other tidbits. Also provides shortcuts for editing
site details and visiting each site’s Admin area. Below the site listing is a form
for adding new sites to the network.

• Users - Displays all users in your network along with basic details such as name,
email, registered sites, IDs and more. Also includes shortcuts for editing and
deleting different users. Below the user listing is a form for adding new sites to
the network.

• Themes - Provides theme options for individual sites and all sites in the network.

• Options - Provides general settings/options for your network. Similar to the
“General Settings” page for individual sites, the “Network Options” page is
where you specify things like dashboard and registration settings.

Admin Areas for Individual Sites

Every site in your network includes its own fully functional Admin Area. When
logged in as Super Admin, you can jump back-and-forth from one Admin area
to the next without ever having to log out and log back in. Quick access to each
of your site’s Admin areas is available in the Sites page in the site listings.

Next Steps

WordPress Tavern has a great
post on “What To Do Or
Consider After You Enable
Multisite In WordPress”:

http://digwp.com/u/483

http://digwp.com/u/483

419419

12.2.6 Using Custom Taxonomies
Technically, custom taxonomies were available in WordPress 2.8, but they lacked an
actual User-Interface (UI) and were not hierarchically structured. In WordPress 3.0,
users now have a fully functional UI – for both posts and pages – enabling them
to take advantage of hierarchical custom taxonomies. But before we can use the
new taxonomy UI to manage our terms, we need to actually create our desired
taxonomies via the functions.php file. Here is a basic example to get you started:

// create custom taxonomy

function digwp_custom_taxonomies() {

 register_taxonomy(

 'wordpress_books', // internal name = machine-readable taxonomy name

 'post', // object type = post, page, link, or custom post-type

 array(

 'hierarchical' => true, // true for hierarchical like cats, false for flat like tags

 'label' => 'WP Books', // the human-readable taxonomy name

 'query_var' => true, // enable taxonomy-specific querying

 'rewrite' => true // pretty permalinks for your taxonomy?

)

);

}

add_action('init', 'digwp_custom_taxonomies', 0);

With this code, we’re creating a custom taxonomy called
“WP Books” that will enable us to further organize our
collection of WordPress Books into whatever taxonomy
we desire. Perhaps the best way to understand how this
works is to add the code to your theme and then check
out the new “WP Books” menu-item displayed in the
Posts menu (see screenshot).

New Menu Item

For each custom taxonomy
created via your theme’s
functions.php file, a menu
item will appear under
the “Posts” menu in the
Admin. Shown here is the
menu item for our “WP
Books” taxonomy.

420420

The integration of custom taxonomies continues the transformation of WordPress
from a simple blogging platform into a more robust and fully-featured CMS.
Here are several excellent articles explaining all the juicy details about custom
taxonomies, so be sure to check ‘em out for more information:

• Custom taxonomies in WordPress 2.8 - http://digwp.com/u/455

• Introducing WordPress 3 Custom Taxonomies - http://digwp.com/u/456

• What are “custom taxonomies”? - http://digwp.com/u/457

12.2.7 Creating and Using Custom Menus
One of the most useful new features of WordPress 3.0 is the new menu-
management system, which is developed by WooThemes to make it super-easy to
create and manage multiple menus. Before custom menus, WordPress designers
had to sort of “pick and choose” among various template tags and try to hack their
way to a decent set of menus. But no longer!

To be fair, WordPress does have some powerful template tags for creating menus,
but with so many different types of content, there is no “one-size-fits-all” template
tag to suit each and every design. And as for enabling mere users to create their
own custom menus – of any type – forget about it. It’s just too painful to do using
only template tags and functions.php trickery.

Thankfully, all this changes with WordPress 3.0’s new menu management system.
Now any admin-level user can easily and quickly fashion any type of custom
menu: category menus with specific exclusions/inclusions, menus for external
resources, specific posts, pages, and just about anything else you can think of.

Even better, version 3.0 enables users to create as many custom menus as needed.
There is even a default widget that works automagically with any widgetized
area. The power and flexibility that this new menu system brings to WordPress
is extraordinary. Think about it: any combination of links may now be displayed
anywhere in your theme with just a few simple mouse clicks. Awesome.

Custom Menu Widget

What if custom menus are not
enabled in your theme? If you
can add widgets, WordPress
provides a “Custom Menu”
widgets that can be used to
display your menus. For further
info on this (and much more),
check out this awesome post:

http://digwp.com/u/477

http://digwp.com/u/477

421421

Menus Menu

After adding the required code
to enable custom menus for
your theme, visit the “Menus”
link to create some custom
menus!

To create and use your own custom menus, first register them by placing the
following code in your theme’s functions.php file. Let’s say we want three menus:

// register three menus

function register_menus() {

 register_nav_menus(

 array(

 'primary-menu' => __('Primary Menu'),

 'secondary-menu' => __('Secondary Menu'),

 'tertiary-menu' => __('Tertiary Menu')

)

);

}

add_action('init', 'register_menus');

This will register and enable three custom menus that can be displayed anywhere
in your theme. Just place the following template tag in the desired location:

<?php wp_nav_menu(array('theme_location' => 'primary-menu')); ?>

In our example, the other two menus would have similar tags that also could be
placed anywhere within your theme. Just replace “primary-menu” with “secondary-
menu” and “tertiary-menu” for each tag.

Then, with the required code in place, log into your Admin area and create a
custom menu under Appearance > Menus.

Just specify the name of your custom menu where it says “My Custom Menu” and
you’re ready to create your own custom menus. Here’s how to do it..

Parameters Aplenty

The wp_nav_menu comes
equipped with 15 parameters
for customizing things like
markup and attributes. Check
out the Codex for a complete
list:

http://digwp.com/u/458

http://digwp.com/u/458

422422

Create a Custom Menu

To create a custom menu, click on the “Menus” link in the “Appearance” menu
panel in the Admin sidebar. Begin by picking a name for your custom menu:

After creating a menu, visit the inner-
left sidebar and choose a Theme
Location from the dropdown. Beneath
that, you can add category, page, and
even custom links to the menu.

As you add items to your menu, they
will appear as slide-open boxes in the
right-hand column. There you can edit
the details of any link and also drag-&-
drop the link boxes to set the order in
which they appear in the menu.

There is much more that can be done
with this template tag, so be sure to
check out the WordPress Codex for
more juicy details: http://digwp.com/u/458

Click on the tab with the plus-sign (+) to create a new custom menu

Using Menus in WP 3.0

We don’t always have room
in the book to flesh out every
topic completely. Fortunately,
DigWP.com enables us to dig
in to much more, such as this
concise tutorial on “Using
Menus in WordPress 3.0”:

http://digwp.com/u/502

http://digwp.com/u/458
http://digwp.com/u/502

423423

12.2.8 Custom Post Types
Our favorite new feature of WordPress 3.0 has got to be the ability to create
custom-post templates. Up until now, setting up custom templates for different
types of content required a bit of custom-field trickery and/or plugin shenanigans
to get the job done. But no longer! Now creating custom templates for different
types of content is as easy as a few clicks in the WordPress Admin.

By default, WordPress 3.0 supports numerous post-types, including posts, pages,
revisions, attachments, and nav-menus. But we aren’t limited to these – WordPress’
new custom-post functionality enables us to create any type of content imaginable.
Everything you need is now well-integrated into the WordPress Admin – and it’s all
fully customizable according to your needs. Let’s look at a basic example...

Basic Example of Custom Post Types

Let’s say that you have a blog that features multimedia content. You want to keep
the multimedia posts separate from the regular blog posts, such that they are
displayed in separate loops and separate feeds (by default, custom types are not
included with regular posts or the regular post feed).

To setup a custom post type, you need to create it via your theme’s functions file.
Here is a basic example whereby we create a custom post type for multimedia
content using the register_post_type function:

// multimedia custom content type

function digwp_post_type_multimedia() {

 register_post_type('Multimedia', array('label' => __('Multimedia'),
'public' => true, 'show_ui' => true));

 register_taxonomy_for_object_type('post_tag', 'Multimedia');

}

add_action('init', 'digwp_post_type_multimedia');

Custom Post Menu

Similar to the Posts and
Pages menu panels, a new
menu panel will be displayed
for each custom content type
specified in your theme’s
functions.php file.

424424

This code sets up a basic custom
post type called “Multimedia”, as
seen in this screenshot.

There are tons of additional
parameters available for setting
up and customizing your own
content types.

To go beyond the basics, head
on over to the WordPress Codex
– http://digwp.com/u/475 – for the
official scoop, and then don’t miss
Justin Tadlock’s comprehensive,
must-read article on custom-post
types: http://digwp.com/u/476.

Displaying Custom Post Types

Once you have posted some custom posts, you can display them on your blog using
the WP_Query class. In your theme file, add the following code snippet:

<?php global $wp_query;

$wp_query = new WP_Query("post_type=multimedia&post_status=publish");

while ($wp_query->have_posts()) : $wp_query->the_post(); ?>

<h1><a href="<?php the_permalink(); ?>"><?php the_title(); ?></h1>

<?php the_content(); ?>

<?php endwhile; ?>

This loop will display the title and content of the most recent custom posts (the
multimedia posts in our example). See Chapter 4 to learn more about using and
customizing the loop. Note that the $wp_query object (used in this loop) accepts the

Custom ...What?

Around the Web, you’ll see this
new functionality referred to as
“custom post types” in some
places and “custom content
types” in others. So which is
it? I think the consensus is that
“custom content types” makes
more sense, but the WordPress
Codex is calling them “custom
post types,” as seen here:

http://digwp.com/u/480

Either way, the alternate
terminology may be helpful
when searching for help on this
rapidly evolving topic.

http://digwp.com/u/475
http://digwp.com/u/476
http://digwp.com/u/480

425425

same parameters as query_posts() (used throughout Chapter 4). See The Codex for
details on the properties available to the WP_Query class: http://digwp.com/u/478, and
parameters available to the query_posts() function: http://digwp.com/u/479.

12.2.9 Shortlinks
Social-media is bigger than ever. Popular services like Twitter restrict the number of
characters allowed in a message, and you don’t want to waste any of them on full
URLs. There are many great URL-shortening services such as bit.ly and tinyurl.com,
and now WordPress makes it fast and easy to create and use your own. There are
three main points to know about WordPress shortlinks:

Shortlink Format and Default Use

WordPress shortlinks are created for posts. The post-ID is used in the URL:

http://digwp.com/?p=123

By default, this information is included in each post’s <head> section like so:

<link rel='shortlink' href='http://digwp.com/?p=123' />

To prevent the shortlink from appearing in the <head>, you must disable it:

remove_action('wp_head', 'wp_shortlink_wp_head', 10, 0);

Just add that code snippet to your active theme’s functions.php file to disable it.
Note that this technique merely disables the <link> element from appearing in the
<head> section; the shortlink functionality itself will remain, enabling you to use (or
not to use) the shortlinks elsewhere in your theme.

Permalinks Required!

To use the_shortlink() template
tag in your theme, you must
have permalinks enabled. See
Chapter 2.3.1 to learn all
about permalinks, and then
visit Chapter 8.3.1 for some
SEO/optimization tips.

http://digwp.com/u/478
http://digwp.com/u/479

426426

Using Shortlinks in Themes

Shortlinks may be used anywhere within the loop. Here is the template tag to use:

<?php the_shortlink(); ?>

By default, this will create a hyperlink for each post. The default code output will
look like this:

The is the short link.

We can tweak several aspects of the default markup using any the following
parameters:

$text – Link text to display. Default to: “This is the short link.”

$title – Title attribute for the anchor tag, <a>. Defaults to the post title.

$before – Text or HTML prefix added to the link. No default value.

$after – Text or HTML suffix added to the link. No default value.

So if we want to display the shortlink in a paragraph, exclude the title attribute,
and simplify the anchor text, we would include the following code in the loop:

<?php the_shortlink('shortlink', null, '<p>', '</p>'); ?>

The cool thing here is that the extra markup is only displayed if the shortlink is
available for the post, leaving no empty HTML tags to soil your design.

There is also a get_shortlink() template tag that will merely return the shortlink
without echoing it to the browser. For more information on the the_shortlink(),
check out the WordPress Codex: http://digwp.com/u/481.

http://digwp.com/u/481

427427

Grabbing the Shortlink from the Admin Area

Need to grab a quick copy of a post’s shortlink? Just pop into the Write/Edit Post
screen in the WordPress Admin and click the “Get Shortlink” button. Here is a
screenshot showing this handy functionality:

This makes it super-easy to grab the shortlink for your latest post and share it
immediately on Twitter, Facebook, or whatever social-media service you prefer. Just
grab and go – nothing could be easier!

But wait, there’s more..

Now that we’ve learned about the major new functionality available in WordPress
3.0, let’s wrap things up by checking out some of the other improvements and
features that help make version 3.0 the best update ever...

428428

12.3 Other Awesome 3.0 Features

As if all that weren’t enough, WordPress 3.0 also includes the following great
features to make it better than ever before!

• Specific Author Templates – Now in addition to naming category-specific
templates like “category-pancakes.php” and “category-20.php”, we can also
name author-specific templates like “author-fonzi.php” and “author-2.php”,
which would serve as templates for the author named “Fonzi” (case-insensitive)
or the author-ID of “2” (respectively). This makes it super-easy to create author-
specific page templates.

• Bulk Updates for Themes and Plugins – This means it will be even easier for you
to manage your WordPress site. Bulk updating of themes and plugins is going
to be a huge time saver. Just go to either Themes or Plugins in the Admin and
follow the “Update” prompts. To bulk update, just check the box next to each
item that you want to update and then click the submit button.

• New “Super-Admin” Role – The new “Super Admin” role has control over both
individual and MultiSite content. This is setup during configuration of your
own MultiSite network in the Admin area (under Tools > Network). See Section
12.2.5 for more information on MultiSite.

• Easy Comment-Form Template Tag – Before version 3.0, displaying your
theme’s comment form involved adding a crazy mess of PHP and markup to
the comments.php file. Just scroll down to the bottom of just about any pre-3.0
theme to see how much code is used to create the form. In WordPress 3.0, you
now have the option to include the entire comment form by simply adding the
new comment_form() template tag in your comments.php file, like so:

 <?php comment_form(); ?>

 There are of course many ways to customize the default output of this tag,
including parameters for just about every aspect of the comment form. For
more information, check out Otto on WordPress: http://digwp.com/u/470.

http://digwp.com/u/470

429429

12.4 Just the Beginning...
Over the years, we’ve seen many WordPress updates, but of them all, version 3.0
seems to be the most valuable and practical in terms of advancing the scope and
usability of WordPress.

The changes brought forth in this new version – from custom post types and
taxonomies to MultiSite functionality and smarter menu management, WordPress
3.0 takes some huge leaps further ahead of the competition, becoming a much
more powerful blogging engine and a robust and flexible CMS.

For complete details on changes made for the WP-3.0 update (there are many!),
visit the WordPress Codex: http://digwp.com/u/471.

http://digwp.com/u/471

Thank you
Without a doubt, WordPress has revolutionized the way we build, operate, and
even think about websites. We hope this book has given you a taste of the vast
potential of WordPress and the endless possibilities that it provides.

What you do with WordPress is up to you, but we encourage you to use it in an
intelligent and responsible way. With so much information available to WordPress
users, it is easy to get lost in the details instead of focusing on what's important:
sharing content with your readers.

One of the most exciting things about WordPress is that it makes creating and
managing content so easy. Future versions of WordPress will continue to improve
in terms of code, features, and potential. And we will be there to help you make
the most of it all.

Thank you for sharing the journey with us :)

About the Authors

Chris Coyier Jeff Starr

http://digwp.com/

Chris Coyier is a real-
world web designer
who has been reaching
for WordPress to power
client sites for many
years. He subscribes
to the theory that
not only is WordPress
capable of powering
any website it is almost
always the right choice.

When he’s not designing sites with WordPress, Chris
Coyier shares his wisdom at CSS-Tricks.com, a
wildly popular design community focusing on CSS,
web design, and everything in between.

Jeff Starr has been
designing & developing
WordPress-powered
sites since 2005. He
develops WordPress
plugins, creates
WordPress themes, and
writes lots of articles
about WordPress, web
security, and designing
with Web Standards.

In addition to writing about WordPress, Jeff
also writes in-depth articles on web design and
development at PerishablePress.com, where he
spends way too much time focusing on the details.

Learn more about WordPress at the

book's companion site, where we cover

many more awesome tips, tricks, and

techniques to help you get the most

out of WordPress.

Continue the journey...
Looking for a great theme for your

WordPress site? Check out the growing

collection of themes available at the

DigWP Theme Clubhouse!

http://themeclubhouse.digwp.com/

The Theme Clubhouse

http://digwp.com/
http://css-tricks.com/
http://perishablepress.com/
http://themeclubhouse.digwp.com/

Written by WordPress veterans

Chris Coyier and Jeff Starr,

Digging into WordPress is packed with

everything you need to get the most out

of WordPress. Suitable for beginners,

perfect for intermediate users, and a

great comprehensive reference guide for

advanced WordPress code wranglers.

Perfectly balanced With theory, exPlanation,

and code, Digging into WordPress

focuses on teaching you how to understand

and then improve your site using modern

techniques, tips, and tricks. Each technique

is fully self-contained, providing complete

instructions and clear explanations to make

implementation a breeze.

"Thank you for teaching me
how to fish."

- Eddie

 "Recently, a client specifically
requested WordPress. No getting around

it this time. I've struggled to find a
comprehensive guide... until now."

- Amy

h t t p : / / d i g w p . c o m

	1.1.1 Welcome
	1.1.2 Why WordPress is Amazing
	1.1.3. How to Setup and Configure WordPress
	1.1.4 How to Implement Advanced Functionality
	1.1.5 How to Optimize and Secure WordPress
	1.1.6 How to Maintain Your WordPress Site
	1.1.7 Don’t Worry

	1.2.1 So, You’ve Never Heard of WordPress
	1.2.2 One Template, Many Pages
	1.2.3 Powerful, Flexible and Extensible

	1.3.1 Key Components of a WordPress Site
	1.3.2 WordPress Core Files
	1.3.3 The WordPress Database
	1.3.4 The Back End
	1.3.5 The Front End

	1.4.1 Tools of the Trade
	1.4.2 A Domain Name
	1.4.3 Web Host / Server
	1.4.4 Text / Code Editor
	1.4.5 FTP Program

	2.1.1 The Famous Five Minute Install
	2.1.2 Where To Install?
	2.1.3 Checking Default Performance
and Proper Functionality

	2.2.1 OK, I’m In. Now What?
	2.2.2 Just Publish Something!
	2.2.3 Go Look At It!
	2.2.4 The Plan

	2.3.1 Permalinks: Your URL Structure
	2.3.2 HTAccess
	2.3.3 Which Style of Permalinks?
	2.3.4 Pick One and Stick With It
	2.3.5 SEO Consideration: Mind Your Post “Slugs”

	2.4.1 Categories and Tags
	2.4.2 They Are Basically the Same
	2.4.3 Use Only One Category Per Post
	2.4.4 Use Multiple Tags Per Post
	2.4.5 Don’t Go Overboard!
	2.4.6 You Don’t Need to Use Them At All
	2.4.7 Custom Taxonomies

	2.5.1 Users and Administrators
	2.5.2 Add a New Account for Yourself

	2.6.1 Choosing the Perfect Theme
	2.6.2 Where to Find Awesome Themes
	2.6.3 Previewing Themes
	2.6.4 Key Things to Look For in a Theme

	2.7.1 Getting Started with Plugins
	2.7.2 Installing and Activating Plugins
	2.7.3 Difference Between Disabling and Uninstalling
	2.7.4 Recommended Plugins

	3.1.1 Understanding Theme Files
	3.1.2 Every Theme is Different
	3.1.3 Commonly Used Theme Files
	3.1.4 How Theme Files Work Together

	3.2.1 Understanding Different Page Views
	3.2.2 Page Views are for Pages
	3.2.3 Single Views are for Posts
	3.2.4 The Many Faces of
Archive Views
	3.2.5 How WordPress Decides which File
to use for Rendering the View

	3.3.1 Kicking It Off with the Header
	3.3.2 The DOCTYPE and HTML Attributes
	3.3.3 META Elements
	3.3.4 The Title
	3.3.5 Link Elements
	3.3.6 The wp_head() Function
	3.3.7 Template Tags
	3.4.2 The Loop in Plain English
	3.4.3 The Loop Just Knows...
	3.4.4 Some Common “Loop Only” Functions
	3.4.5 Some Common “Outside Loop” Functions

	3.5.1 Comments
	3.5.2 The comments.php File
	3.5.3 Selective Inclusion for Different Views

	3.6.1 The Sidebar
	3.6.2 Purpose and Placement
	3.6.3 Popular Sidebar Functions 75
	3.6.4 Widgets, Widgets, Widgets

	3.7.1 The Search Form
	3.7.2 Why is This a Separate File?
	3.7.3 Alternatives to WordPress Search

	3.8.1 The Footer
	3.8.2 The wp_footer() Hook
	3.8.3 Mini Footers / Mega Footers

	3.9.1 Theme Functions
	3.9.2 Functions are for Specific Themes
	3.9.3 Advantage Over Core Hacks

	4.1.1 Customizing the Loop
	4.1.2 The Loop Doesn't Care About Markup
	4.1.3 The Power of query_posts
	4.1.4 Displaying Different Numbers of Posts
	4.1.5 Excluding Specific Categories
	4.1.6 Changing the Sort Order
	4.1.7 Show Specific Pages, Embed a Page within a Page
	4.1.8 Using Multiple Loops

	4.2.1 Sidebars and Footers
	4.3.1 Menus, Archive Lists & Tag Clouds
	4.3.2 Page-Specific Menu Styles
	4.3.3 Create the Perfect Archives Page
	4.3.4 Impress Your Visitors with a Tag Cloud

	4.4.1 Side Content and Useful Menu Items
	4.4.2 Displaying Recent Comments
	4.4.3 Displaying Recent Posts
	4.4.4. Listing Popular Posts
	4.4.5 Listing Recently Modified Posts
	4.4.7 Import and Display Twitter
	4.4.9 Import and Display Other Content

	4.5.1 Creating and Using Child Themes
	4.6.1 Styling Your Theme
	4.6.2 Different Inclusion Methods
	4.6.3 To Reset or Not To Reset?

	4.7.1 Using Multiple Themes
	4.8.1 Widgetizing
	5.1.1 Extensibility
	5.1.2 Extending WordPress with Plugins
	5.1.3 A Plugin for (Almost) Everything
	5.1.4 Do You Need a Plugin?
	5.1.5 Choosing the Perfect Plugin

	5.2.1 Plugin Usage and Maintenance
	5.2.2 Sequential Installation
	5.2.3 Keep Plugins Up-To-Date
	5.2.4 Subscribe to Plugin Comment Threads
	5.2.5 Getting Help with Plugins
	5.2.6 Diagnosing Plugin Conflicts
	5.2.7 Disabling and Uninstalling Plugins
	5.3.2 Plugins vs. Theme Functions (via functions.php)
	5.3.3 Useful Examples of Theme Functions
	5.3.4 Example #1: Easy Admin Buttons for Comments
	5.3.5 Example #2: Sitewide Shortcode Functionality
	5.3.6 Example #3: Transferring Plugins to functions.php
	5.3.7 Example #4: Transferring Functions to a Plugin

	5.4.1 Other Ways to Extend
WordPress Functionality
	5.4.2 Functions Within Theme Files
	5.4.3 Hacking the WordPress Core

	5.5.1 WordPress as a Content
Management System (CMS)
	5.5.2 CMS Features Built Into WordPress
	5.5.3 Working With Custom Fields
	5.5.4 Users, Roles and Permissions
	5.5.5 Categorizing, Tagging, and Custom Taxonomies
	5.5.6 Page Templates
	5.5.7 Page, Category, and Tag Hierarchies
	5.5.8 Dynamic Menus

	5.6.1 Extending CMS Functionality
	5.6.2 CMS-Related Plugins
	5.6.3 Using WordPress as a Forum
	5.6.4 Integration with Third-Party Forum Applications
	5.6.5 Multiple Blogs with WordPress MU

	6.1.1 Working with RSS Feeds
	6.1.2 Quick Introduction to Feeds
	6.1.3 Dynamic Publishing and Content Distribution
	6.1.4 The Pros and Cons of Delivering RSS Feeds

	6.2.1 Different Types of WordPress Feeds
	6.2.2 Posts Feed
	6.2.3 Comments Feed
	6.2.4 Individual Post Comments Feed
	6.2.6 Other Feed Types

	6.3.1 Feed Configurations
and Formats
	6.3.2 Full Feeds
	6.3.3 Partial Feeds
	6.3.4 Number of Posts
	6.3.5 WordPress Feed Formats

	6.4.1 Using FeedBurner For Feed Delivery
	6.4.2 Benefits of Using FeedBurner
	6.4.3 Setting Up and Configuring a FeedBurner Account
	6.4.4 Redirecting to FeedBurner via Plugin
	6.4.5 Redirecting to FeedBurner via HTAccess
	6.4.6 Redirecting to FeedBurner via PHP

	6.5.1 Tracking and Displaying
Feed Statistics
	6.5.2 Types of Statistics Provided by FeedBurner
	6.5.3 Displaying FeedBurner Statistics
	6.5.4 Alternatives to FeedBurner

	6.6.1 Customizing Feeds
	6.6.2 Formatting Feed Images
	6.6.3 Adding a Custom Feed Image
	6.6.4 Include Comments in Feeds
	6.6.5 Creating Custom Feeds
	6.6.6 More Feed Customization Tricks
	6.6.7 Styling Feeds
	6.6.8 Removing the WordPress Version Number
	6.6.9 Disable and Redirect Unwanted Feed Formats
	6.6.10 Insert Custom Content into Feeds
	6.6.11 Importing and Displaying External Feeds
	6.6.12 Buffer Period After Posting
	6.6.13 Protecting Feed Content

	6.7.1 Validating Feeds
	6.7.2 Diagnosing and Troubleshooting Errors

	7.1.1 Optimizing the WordPress
Comments Area
	7.1.2 Welcome to the WordPress Comments Area
	7.1.3 About the WordPress Comment System
	7.1.4 Comments, Pingbacks and Trackbacks
	7.1.5 Anatomy of the WordPress
Comment Area

	7.2.1 Syndicating WordPress Comments
	7.2.2 WordPress Main Comments Feed
	7.2.3 Post-Specific Comment Feeds

	7.3.1 Formatting the Comments Area
	7.3.2 Using wp_list_comments() or a Custom Loop?
	7.3.3 Implementing Paged Comments
	7.3.4 Implementing Threaded Comments
	7.3.5 Separating Comments, Pingbacks and Trackbacks
	7.3.6 Eliminating Pingbacks and Trackbacks
	7.3.7 Control Comments, Pingbacks and Trackbacks
Directly with the Database

	7.4.1 Customizing Comment Display
	7.4.2 Numbering Comments Globally and Locally
	7.4.3 Alternating Comment Styles
	7.4.4 Custom Styles for Authors
and Members
	7.4.5 Styling Comments with Gravatars
	7.4.6 Add a "Your comment is awaiting moderation" Message
	7.4.7 Moderation Links in the Theme Itself
	7.4.8 Display Comment, Ping/Trackback Counts

	7.5.1 Optimizing the Comment Form
	7.5.2 Setup Comment Previews
	7.5.3 Rich-Text Editors for Comments
	7.5.4 Adding Comment Quicktags
	7.5.5 Comment Management and Spam Prevention

	7.6.1 Controlling Comment Spam
	7.6.2 WordPress' Built-In Anti-Spam Functionality
	7.6.3 Anti-Spam Plugins for WordPress

	7.7.1 Other Considerations & Techniques
	7.7.2 Enhancing and Encouraging Comments
	7.7.3 "nofollow" Links
	7.7.4 Integrating Twitter

	8.1.1 SEO Strengths and Weaknesses
	8.1.2 Strong Focus on Content
	8.1.3 Built-In "nofollow" Comment Links
	8.1.4 Duplicate Content Issues

	8.2.1 Controlling Duplicate Content
	8.2.2 Meta noindex and nofollow Tags
	8.2.3 Nofollow Attributes
	8.2.4 Robots.txt Directives
	8.3.1 Optimizing Permalink Structure 302
	8.3.2 Default URLs vs. "Pretty" Permalinks
	8.3.3 Keep Permalinks Short
	8.3.4 Maximize Permalink Keywords

	8.4.1 Scoring with Google
	8.4.2 Content, Content, Content
	8.4.3 Detecting Duplicate Content
	8.4.4 Optimizing Heading Elements
	8.4.5 Optimizing Title Tags
	8.4.6 The nofollow Wars
	8.4.7 Fixing Broken Links
	8.4.8 Using a Sitemap
	8.4.9 Other SEO tips
	8.4.10 SEO-Related plugins

	8.5.1 Tracking the Success of Your Site
	8.5.2 Statistical WordPress Plugins
	8.5.3 Shaun Inman’s Mint Stats
	8.5.4 Google Analytics
	8.5.5 Other Metrics

	8.6.1 Closing Thoughts on SEO
	9.1.1 Keeping a Site Healthy
	9.1.2 Securing WordPress
	9.1.3 Setting Secure File Permissions
	9.1.4 Disabling Directory Views
	9.1.5 Forbid Access to Sensitive Files
	9.1.6 Neuter the Default "admin" User Account
	9.1.7 Remove the WordPress Version Number
	9.1.8 Securing Your Database
	9.1.9 Secure Multiple Installations
	9.1.10 Prevent Hotlinking
	9.1.11 More WordPress Security Help

	9.2.1 Stopping Comment Spam
	9.2.2 Configuring Your WordPress Admin Options
	9.2.4 Using the Built-In Comment Blacklist
	9.2.5 Disabling Comments on Old Posts
	 9.2.6 Deny Access to No-Referrer Requests

	9.3.1 Monitoring and Fixing Errors
	9.3.2 Alex King's 404 Notifier Plugin
	9.3.3 Broken Link Checker Plugin
	9.3.4 Other Error-Logging Techniques
	9.3.5 Online Monitoring Services

	9.4.1 Staying Current with WordPress
	9.4.2 Updating WordPress
	9.4.3 Logging Changes
	9.4.4 Backing Up Your Database and Files
	9.5.2 Content and File Caching
	9.5.3 File Compression Methods
	9.5.4 Optimizing CSS and JavaScript
	9.5.5 Reducing the Number of HTTP Requests
	9.5.6 Plugin Maintenance
	9.5.7 Database Maintenance
	9.5.8 Other Optimization Techniques

	10.1.1 Everybody Loves Bonus Tricks 377 10.2.1 Add Author Bios to Single Posts 377 10.3.1 Adding a T

